-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
242 lines (203 loc) · 9.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
''' Implementation for the training process of Network '''
import os
import time
import math
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# import warning
# warning.filterwarning('ignore')
from torch.optim.lr_scheduler import MultiStepLR
from dataset import MXFaceDataset
from backbone import LResNet50EIR
import random
def setup_seed(seed, cuda_deterministic=True):
torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
class Hyperparameters():
def __init__(self):
self.cuda = True
self.cudnn = False
self.visible_devices = '0'
# self.visible_devices = '0, 1'
self.fp16 = True
self.base_lr = 0.1
self.momentum = 0.9
self.weight_decay = 0.0005
self.gamma = 0.1
self.resume = None
# self.resume = './Models-LResNet50EIR/LResNet50EIR_1th_checkpoint.tar'
self.finetune = None
# self.finetune = './Models-LResNet50EIR/LResNet50EIR_2th_epoch.pth'
self.data_path = '/home/jason/Datasets/InsightFace/faces_webface'
self.img_size = [112, 112]
self.train_batch_size = 128
self.bs_mult = 4
# self.train_batch_size = 256
# self.bs_mult = 2
self.drop_last = True
self.steps = [16, 24]
self.start_epoch = 0
self.epochs = 28
self.warmups = 0
self.display = 100.0
self.workers = 2
self.num_classes = 10572
self.model_name = 'LResNet50EIR'
self.model_dir = './Models-LResNet50EIR'
self.log_dir = './log-LResNet50EIR'
def main():
global params
''' optionally finetune from a pre-trained model '''
if params.finetune is not None:
model = torch.load(params.finetune)
print("=> load pre-trained model '{}'\n".format(params.finetune))
else:
''' create Network for face recognition '''
model = eval(params.model_name)(num_classes=params.num_classes)
print(model)
print()
model_params = []
for name, value in model.named_parameters():
model_params += [{'params': value}]
''' define loss function and optimizer '''
optimizer = torch.optim.SGD(model_params, params.base_lr, momentum=params.momentum, weight_decay=params.weight_decay, nesterov=False)
if params.cuda:
model = nn.DataParallel(model).cuda()
net = model.module
else:
net = model.cpu()
''' optionally resume from a checkpoint '''
if params.resume is not None:
checkpoint = torch.load(params.resume)
params.start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
del checkpoint
print("=> resume from checkpoint '{}'\n".format(params.resume))
''' load image '''
train_set = MXFaceDataset(root_dir=params.data_path)
train_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=params.train_batch_size*params.bs_mult, shuffle=True,
num_workers=params.workers, pin_memory=True, drop_last=params.drop_last,
worker_init_fn=seed_worker, prefetch_factor=2, persistent_workers=True)
if os.path.exists(params.model_dir) is False:
os.makedirs(params.model_dir)
scheduler = MultiStepLR(optimizer, milestones=[v + params.warmups for v in params.steps], gamma=params.gamma, last_epoch=params.start_epoch-1)
if params.fp16:
scaler = torch.cuda.amp.GradScaler()
else:
scaler = None
for epoch in range(params.start_epoch, params.epochs):
lr_scale = 1.0 * np.clip(max(epoch, 1e-6) * 10.0 / max(params.warmups, 1e-6), 1, 10) / 10
loss_scale = 1.0 / params.bs_mult
for param_group, lr in zip(optimizer.param_groups, scheduler._get_closed_form_lr()):
param_group['lr'] = lr * lr_scale
real_lr = optimizer.param_groups[-1]['lr']
virtual_epoch = epoch + 1
print('Epoch: {}\n'.format(virtual_epoch))
''' train for one epoch '''
train(train_loader, model, optimizer, epoch, loss_scale, scaler)
scheduler.step()
save_name = params.model_dir + '/' + params.model_name + '_' + str(virtual_epoch) + 'th_epoch.pth'
torch.save(net, save_name)
save_name = params.model_dir + '/' + params.model_name + '_' + str(virtual_epoch) + 'th_checkpoint.tar'
torch.save({'epoch': epoch + 1, 'state_dict': net.state_dict(), 'optimizer' : optimizer.state_dict()}, save_name)
def train(train_loader, model, optimizer, epoch, loss_scale, scaler):
global params
model.train()
if params.cuda:
net = model.module
else:
net = model
acc = 0; loss = 0; loss_ = 0; count = 0
for i, (data_batch, label_batch) in enumerate(train_loader):
real_lr = optimizer.param_groups[-1]['lr']
data_splits = data_batch.split(params.train_batch_size, dim=0)
label_splits = label_batch.split(params.train_batch_size, dim=0)
positive = torch.unique(label_batch, sorted=True)
perm = torch.randperm(params.num_classes)
perm[positive] = 0
indices = torch.topk(perm, k=int(params.num_classes*net.loss.r), largest=False)[1]
partial_index = indices.sort()[0]
if params.cuda:
partial_index = partial_index.cuda()
for j in range(len(label_splits)):
data = data_splits[j]
label = label_splits[j]
if params.cuda:
data, label = data.cuda(), label.cuda()
''' forward and compute loss '''
if scaler is None:
face_loss = model(data, label, partial_index.repeat(torch.cuda.device_count()))
else:
with torch.cuda.amp.autocast():
face_loss = model(data, label, partial_index.repeat(torch.cuda.device_count()))
batch_scale = 1.0 * label.size(0) / params.train_batch_size
''' compute gradient and do SGD step '''
if j == 0:
optimizer.zero_grad()
if optimizer.state[optimizer.param_groups[-1]["params"][0]]:
optimizer.state[optimizer.param_groups[-1]["params"][0]]["momentum_buffer"][:] = 0
optimizer.state[optimizer.param_groups[-1]["params"][0]]["momentum_buffer"][partial_index] = net.loss.weight_mom[partial_index]
if (j + 1) == len(label_splits):
if scaler is None:
(face_loss.mean() * loss_scale * batch_scale).backward()
else:
scaler.scale(face_loss.mean() * loss_scale * batch_scale).backward()
if scaler is None:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)
optimizer.step()
else:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)
scaler.step(optimizer)
scaler.update()
net.restrict_weights()
net.loss.weight_mom[partial_index] = optimizer.state[optimizer.param_groups[-1]["params"][0]]["momentum_buffer"][partial_index]
else:
if scaler is None:
(face_loss.mean() * loss_scale).backward()
else:
scaler.scale(face_loss.mean() * loss_scale).backward()
loss += face_loss.data.mean()
count += 1
if (i % params.display == 0 or (i + 1) == len(train_loader)) and (j + 1) == len(label_splits):
loss /= count
# print(net.loss.bias.data)
print('{}, Iteration: {} ({}/{}={:.0f}%) loss: {:.4f} lr: {:.4f}\n'.format(
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), i, params.train_batch_size*params.bs_mult*i+label_batch.size(0),
len(train_loader.dataset), 100.0 * (i + 1) / len(train_loader), loss, real_lr))
loss = 0
count = 0
if __name__ == '__main__':
params = Hyperparameters()
print('Hyperparameters:')
print(' cuda: {}\n cudnn: {}\n device_id: {}\n fp16: {}\n base_lr: {}\n momentum: {}\n weight_decay: {}\n gamma: {}\n'
' data_path: {}\n img_size: {} \n batch_size: {}\n bs_mult: {}\n drop_last: {}\n steps: {}\n epochs: {}\n'
' warmups: {}\n workers: {}\n num_classes: {}\n model_name: {}\n model_dir: {}\n log_dir: {}\n'.format(
params.cuda, params.cudnn, params.visible_devices, params.fp16, params.base_lr, params.momentum, params.weight_decay, params.gamma,
params.data_path, params.img_size, params.train_batch_size, params.bs_mult, params.drop_last, params.steps, params.epochs,
params.warmups, params.workers, params.num_classes, params.model_name, params.model_dir, params.log_dir))
os.environ["CUDA_VISIBLE_DEVICES"] = params.visible_devices
setup_seed(seed=1, cuda_deterministic=True)
main()