-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathdata_processing.py
734 lines (597 loc) · 27.6 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
import copy
import json
import logging
import re
import sys
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer
import functools
from .arguments import *
LOGGER = logging.Logger("Data Processing", level=logging.INFO)
LOGGER_HANDLER = logging.StreamHandler(sys.stderr)
LOGGER_HANDLER.setFormatter(logging.Formatter("[%(asctime)s] Fine-Tuning [%(levelname)s] : %(message)s"))
LOGGER.addHandler(LOGGER_HANDLER)
IGNORE_INDEX = -100 # pytorch cross_entropy loss ignores tokens with this id
# note how we choose the padding token
# later attention mask will be applied to all padding tokens
def get_padding_token(tokenizer: PreTrainedTokenizer):
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is not None:
return tokenizer.pad_token_id
else:
return tokenizer.unk_token_id
def handle_data_padding(
token_arrays: List[np.array], padding_ids: List[int], tokenization_args: TokenizationArgs
) -> List[np.array]:
"""
For padding the data equally.
Applies padding only if tokenization_args.always_pad is true.
Supports two modes of padding:
* default - add pad tokens on the right side
* random - sample how many will be added to the right and how many will be added to the left
Args:
token_arrays - should be a list of 1D numpy arrays of the same length (for example input_ids and labels)
padding_ids - values to use for padding
tokenization_args -
tokenization_args.always_pad - whether to pad
tokenization_args.max_total_length - length to pad to (assumes the input is not longer)
tokenization_args.random_pad - whether to use random or default padding mode
"""
if len(token_arrays) != len(padding_ids):
raise ValueError("Number of paddings_ids should match number of token_arrays")
for ta in token_arrays:
if len(ta.shape) != 1:
raise ValueError("token_arrays should be 1D")
if ta.shape != token_arrays[0].shape:
raise ValueError("token_arrays should have the same length")
if tokenization_args.always_pad:
padding = tokenization_args.max_total_length - token_arrays[0].shape[-1]
if padding > 0:
if tokenization_args.random_pad:
padding_left = np.random.randint(0, padding + 1)
padding_right = padding - padding_left
else:
padding_left = 0
padding_right = padding
result = []
for ta, pi in zip(token_arrays, padding_ids):
result.append(
np.pad(
ta,
((padding_left, padding_right),),
"constant",
constant_values=pi,
)
)
token_arrays = result
return token_arrays
def tokenize_text_no_special_tokens(text: str, tokenizer: PreTrainedTokenizer) -> np.array:
if not isinstance(text, str):
raise ValueError(f"Expected string got {text}")
return tokenizer.encode(text, add_special_tokens=False, return_tensors="np")[0].astype(np.int64)
def inst_tuning_data_processor(
data_args: DataArgs, data, tokenizer: PreTrainedTokenizer, tokenization_args: TokenizationArgs
) -> Dict[str, np.array]:
def prepare_input_text(
pre_prompt_text: str,
prompt_field: Optional[str],
post_prompt_text: str,
pre_question_text: str,
question_field: str,
post_question_text: str,
pre_response_text: str,
response_field: str,
post_response_text: str,
data_dict: Dict[str, str],
):
input_data = []
if prompt_field is not None:
input_data.append(pre_prompt_text)
input_data.append(data_dict[prompt_field])
input_data.append(post_prompt_text)
if question_field is None:
raise ValueError("For insturction fine-tuning question_field is required")
input_data.append(pre_question_text)
input_data.append(data_dict[question_field])
input_data.append(post_question_text)
input_text = "".join(input_data)
if response_field is None:
raise ValueError("For insturction fine-tuning response_field is required")
response_text = "".join([pre_response_text, data_dict[response_field], post_response_text])
return input_text, response_text
def tokenize_data(
input_response: List[Tuple[str, str]],
tokenizer: PreTrainedTokenizer,
tokenization_args: TokenizationArgs,
) -> List[Dict[str, np.array]]:
def tokenize_one(input_text: str, response_text: str):
input_tokens = tokenize_text_no_special_tokens(text=input_text, tokenizer=tokenizer)
input_tokens = np.pad(input_tokens, ((1, 0),), "constant", constant_values=tokenizer.bos_token_id)
input_tokens = input_tokens[: tokenization_args.max_input_length]
response_tokens = tokenize_text_no_special_tokens(text=response_text, tokenizer=tokenizer)
response_tokens = np.pad(response_tokens, ((0, 1),), "constant", constant_values=tokenizer.eos_token_id)
response_tokens = response_tokens[: tokenization_args.max_output_length]
assert len(input_tokens.shape) == 1 and len(response_tokens.shape) == 1
all_tokens = np.concatenate([input_tokens, response_tokens], axis=-1)
labels = np.concatenate([np.full_like(input_tokens, IGNORE_INDEX), response_tokens])
assert labels.shape == all_tokens.shape
assert len(labels.shape) == 1
all_tokens = all_tokens[: tokenization_args.max_total_length]
labels = labels[: tokenization_args.max_total_length]
all_tokens, labels = handle_data_padding(
token_arrays=[all_tokens, labels],
padding_ids=[get_padding_token(tokenizer), IGNORE_INDEX],
tokenization_args=tokenization_args,
)
attention_mask = all_tokens != get_padding_token(tokenizer)
return all_tokens, labels, attention_mask
def tokenize_portion(input_response_portion: List[Tuple[str, str]]) -> List[Dict[str, np.array]]:
result = []
for input_text, response_text in input_response_portion:
all_tokens, labels, attention_mask = tokenize_one(input_text, response_text)
result.append(dict(input_ids=all_tokens, labels=labels, attention_mask=attention_mask))
return result
return tokenize_portion(input_response)
input_response = prepare_input_text(
pre_prompt_text=data_args.pre_prompt_text,
prompt_field=data_args.prompt_field,
post_prompt_text=data_args.post_prompt_text,
pre_question_text=data_args.pre_question_text,
question_field=data_args.question_field,
post_question_text=data_args.post_question_text,
pre_response_text=data_args.pre_response_text,
response_field=data_args.response_field,
post_response_text=data_args.post_response_text,
data_dict=data,
)
elem = tokenize_data([input_response], tokenizer=tokenizer, tokenization_args=tokenization_args)[0]
return elem
def chat_tuning_data_processor(
data_args: DataArgs, data, tokenizer: PreTrainedTokenizer, tokenization_args: TokenizationArgs
) -> Dict[str, np.array]:
input_ids = []
labels = []
data = data[data_args.chat_conversations_field]
model_prefix = tokenize_text_no_special_tokens(text=data_args.chat_model_response_prefix, tokenizer=tokenizer)
human_prefix = tokenize_text_no_special_tokens(text=data_args.chat_human_response_prefix, tokenizer=tokenizer)
input_ids.append(tokenize_text_no_special_tokens(data_args.chat_initial_prompt, tokenizer=tokenizer))
labels.append(np.full_like(input_ids[0], IGNORE_INDEX))
replace_rules_raw_list = (
data_args.chat_replace_rules.split("<;>") if data_args.chat_replace_rules is not None else []
)
replace_rules_list = []
for replace_rule in replace_rules_raw_list:
regex, target = replace_rule.split("<R>")
LOGGER.debug(f"Chat: Compiling regex {regex} for replacing with {target}")
regex = re.compile(regex, flags=re.DOTALL)
replace_rules_list.append((regex, target))
LOGGER.debug(f"Chat: Compiled {len(replace_rules_list)} replace rules")
def handle_replacements(text: str) -> str:
for regex, target in replace_rules_list:
text = regex.sub(target, text)
return text
for part in data:
text = part[data_args.chat_data_field]
text = handle_replacements(text)
tokenized_text = tokenize_text_no_special_tokens(text=text, tokenizer=tokenizer)
is_model = part[data_args.chat_source_name_field] == data_args.chat_model_source_name
if is_model:
token_prefix = model_prefix
token_sufix = np.array([tokenizer.eos_token_id])
else:
token_prefix = human_prefix
token_sufix = np.empty(0, dtype=np.int64)
input_ids.append(token_prefix)
input_ids.append(tokenized_text)
input_ids.append(token_sufix)
labels.append(np.full_like(token_prefix, IGNORE_INDEX))
if is_model:
labels.append(tokenized_text)
labels.append(token_sufix)
else:
labels.append(np.full_like(tokenized_text, IGNORE_INDEX))
labels.append(np.full_like(token_sufix, IGNORE_INDEX))
input_ids = [np.array([tokenizer.bos_token_id])] + input_ids
input_ids = np.concatenate(input_ids, axis=-1)
labels = [np.array([IGNORE_INDEX])] + labels
labels = np.concatenate(labels, axis=-1)
assert input_ids.shape == labels.shape
assert len(input_ids.shape) == 1
input_ids = input_ids[: tokenization_args.max_total_length]
labels = labels[: tokenization_args.max_total_length]
input_ids, labels = handle_data_padding(
token_arrays=[input_ids, labels],
padding_ids=[get_padding_token(tokenizer), IGNORE_INDEX],
tokenization_args=tokenization_args,
)
attention_mask = input_ids != get_padding_token(tokenizer)
attention_mask = np.logical_and(attention_mask, input_ids != tokenizer.eos_token_id)
result = dict(input_ids=input_ids.astype(np.int64), labels=labels.astype(np.int64), attention_mask=attention_mask)
return result
def get_data_processor(data_args: DataArgs):
if data_args.data_type == "instructions":
return inst_tuning_data_processor
elif data_args.data_type == "chat":
return chat_tuning_data_processor
def separate_data_args(data_args: DataArgs) -> List[DataArgs]:
"""
Given the data_args creates a separate instance for each dataset.
"""
data_types = data_args.data_type.split(",")
num_datasets = len(data_types)
data_paths = data_args.data_path.split(",")
revisions = data_args.data_revision.split(",")
data_splits = data_args.dataset_split.split(",")
def split_field(field: Optional[str], dataset_type: str, separator: str, process_field_name_fn):
if field is None:
return [None] * num_datasets
else:
field_list = field.split(separator)
if len(field_list) == 1:
LOGGER.info(f"Broadcastin used for {dataset_type} fields {field_list}.")
field_list_getter = lambda _: field_list[0]
else:
field_list_getter = lambda x: field_list[x]
result = []
appended = 0
for dt in data_types:
if dt == dataset_type:
converted_field_data = process_field_name_fn(field_list_getter(appended))
result.append(converted_field_data)
appended += 1
else:
result.append(None)
return result
def none_str_to_none(x):
if x == "None":
return None
else:
return x
split_basic_instruct_field = functools.partial(
split_field, dataset_type="instructions", separator=",", process_field_name_fn=none_str_to_none
)
prompt_fields = split_basic_instruct_field(data_args.prompt_field)
question_fields = split_basic_instruct_field(data_args.question_field)
response_fields = split_basic_instruct_field(data_args.response_field)
split_adv_instruct_field = functools.partial(
split_field, dataset_type="instructions", separator="<,>", process_field_name_fn=lambda x: x
)
pre_prompt_texts = split_adv_instruct_field(data_args.pre_prompt_text)
post_prompt_texts = split_adv_instruct_field(data_args.post_prompt_text)
pre_question_texts = split_adv_instruct_field(data_args.pre_question_text)
post_question_texts = split_adv_instruct_field(data_args.post_question_text)
pre_response_texts = split_adv_instruct_field(data_args.pre_response_text)
post_response_texts = split_adv_instruct_field(data_args.post_response_text)
split_basic_chat_field = functools.partial(
split_field, dataset_type="chat", separator=",", process_field_name_fn=none_str_to_none
)
chat_conversations_fields = split_basic_chat_field(data_args.chat_conversations_field)
chat_data_fields = split_basic_chat_field(data_args.chat_data_field)
chat_source_name_fields = split_basic_chat_field(data_args.chat_source_name_field)
chat_model_source_names = split_basic_chat_field(data_args.chat_model_source_name)
if data_args.data_filter is None:
data_filters = [None for _ in range(num_datasets)]
else:
data_filters = data_args.data_filter.split("<,>")
data_proportions = data_args.data_proportions
LOGGER.info(
"Praparing configs:\n"
f"data_types : {data_types}\n"
f"data_paths : {data_paths}\n"
f"revisions : {revisions}\n"
f"data_splits : {data_splits}\n"
f"data_proportions : {data_proportions}\n"
f"data_filters : {data_filters}\n"
)
if (
num_datasets != len(data_paths)
or num_datasets != len(revisions)
or num_datasets != len(data_splits)
or num_datasets != len(data_proportions)
or num_datasets != len(data_filters)
):
raise ValueError(
"When preparing the mixture provide the same number of elements in: "
"data_path, data_revision, data_type, data_proportions (separated by ','), data_filters (separated by <,>)"
)
splitted_data_args = []
for d_id in range(num_datasets):
d_args = copy.deepcopy(data_args)
d_args.data_type = data_types[d_id]
d_args.data_path = data_paths[d_id]
d_args.data_revision = revisions[d_id]
d_args.dataset_split = data_splits[d_id]
d_args.data_proportions = data_proportions[d_id]
d_args.data_filter = data_filters[d_id]
d_args.prompt_field = prompt_fields[d_id]
d_args.question_field = question_fields[d_id]
d_args.response_field = response_fields[d_id]
d_args.pre_prompt_text = pre_prompt_texts[d_id]
d_args.post_prompt_text = post_prompt_texts[d_id]
d_args.pre_question_text = pre_question_texts[d_id]
d_args.post_question_text = post_question_texts[d_id]
d_args.pre_response_text = pre_response_texts[d_id]
d_args.post_response_text = post_response_texts[d_id]
d_args.chat_conversations_field = chat_conversations_fields[d_id]
d_args.chat_data_field = chat_data_fields[d_id]
d_args.chat_source_name_field = chat_source_name_fields[d_id]
d_args.chat_model_source_name = chat_model_source_names[d_id]
splitted_data_args.append(d_args)
return splitted_data_args
def filter_dataset(dataset, data_args: DataArgs, tokenizer: PreTrainedTokenizer):
"""
For filtering the dataset according to the rules described in data_args.
data_args should be separated using separate_data_args.
"""
if data_args.data_filter is not None and data_args.data_filter != "":
match_mode = "<M>"
lenlt_mode = "<LENLT>"
lengt_mode = "<LENGT>"
toklt_mode = "<TOKLT>"
tokgt_mode = "<TOKGT>"
all_modes = [match_mode, lenlt_mode, lengt_mode, toklt_mode, tokgt_mode]
raw_rules = data_args.data_filter.split("<;>")
rules = []
for rr in raw_rules:
mode_matched = False
for mode in all_modes:
if mode in rr:
if mode_matched:
raise ValueError("Only one mode can be matched")
the_trigger = mode
mode_matched = True
if not mode_matched:
raise ValueError(f"In {rr} at lest one mode must be matched. Modes: {all_modes}")
field, regex = rr.split(the_trigger)
LOGGER.info(f"Dataset: Compiling {regex} for mode {the_trigger} with field {field}")
regex = re.compile(regex, flags=re.DOTALL) if the_trigger == match_mode else int(regex)
rules.append((field, regex, the_trigger))
def filtering(x: Dict[str, Any]):
int_trigger = "<int>"
def recursive_check_match(regex, v: Union[Dict[str, Any], str], field_nesting: List[str]):
if len(field_nesting) == 0:
assert isinstance(v, str)
return regex.match(v) is not None
fn = field_nesting[0]
if fn.startswith(int_trigger):
fn = fn[len(int_trigger) :]
if fn == "*v" or fn == "*^":
and_mode = fn == "*^"
or_mode = fn == "*v"
for elem in v:
result = recursive_check_match(regex, elem, field_nesting[1:])
if result and or_mode:
return True
elif (not result) and and_mode:
return False
return and_mode
else:
fn = int(fn)
return recursive_check_match(regex, v[fn], field_nesting[1:])
else:
return recursive_check_match(regex, v[fn], field_nesting[1:])
def recursive_count(
processor: Callable[[str], int], v: Union[Dict[str, Any], str], field_nesting: List[str]
):
if len(field_nesting) == 0:
assert isinstance(v, str)
return processor(v)
fn = field_nesting[0]
if fn.startswith(int_trigger):
fn = fn[len(int_trigger) :]
if fn == "*":
result = 0
for elem in v:
result += recursive_count(processor, elem, field_nesting[1:])
return result
else:
fn = int(fn)
return recursive_count(processor, v[fn], field_nesting[1:])
else:
return recursive_count(processor, v[fn], field_nesting[1:])
for field, regex, mode in rules:
field_nesting = field.split(".")
if mode == match_mode:
if not recursive_check_match(regex, x, field_nesting):
return False
elif mode == lenlt_mode:
if recursive_count(lambda v: len(v), x, field_nesting) >= regex:
return False
elif mode == lengt_mode:
if recursive_count(lambda v: len(v), x, field_nesting) <= regex:
return False
elif mode == toklt_mode:
if (
recursive_count(
lambda v: tokenizer.encode(v, add_special_tokens=False, return_tensors="np").shape[-1],
x,
field_nesting,
)
>= regex
):
return False
elif mode == tokgt_mode:
if (
recursive_count(
lambda v: tokenizer.encode(v, add_special_tokens=False, return_tensors="np").shape[-1],
x,
field_nesting,
)
<= regex
):
return False
return True
LOGGER.info(f"Dataset: Compiling {len(rules)} filtering rules")
return dataset.filter(filtering)
else:
return dataset
class SingleTuneDataset(Dataset):
"""
For handling a single dataset.
data_args should be separated using separate_data_args.
"""
def __init__(
self,
data_args: DataArgs,
tokenizer: PreTrainedTokenizer,
tokenization_args: TokenizationArgs,
return_pt: bool = True,
data_processor=None,
):
super().__init__()
self.data_args = data_args
self.tokenizer = tokenizer
self.tokenization_args = tokenization_args
self.return_pt = return_pt
self.data_processor = data_processor if data_processor is not None else get_data_processor(data_args=data_args)
LOGGER.info(
f"Loading data from {self.data_args.data_path}, revision {self.data_args.data_revision}, split {self.data_args.dataset_split}"
)
if self.data_args.data_path is None:
raise ValueError("No dataset (data_path) specified")
raw_dataset = load_dataset(
self.data_args.data_path, revision=self.data_args.data_revision, split=self.data_args.dataset_split
)
raw_dataset = filter_dataset(dataset=raw_dataset, data_args=data_args, tokenizer=tokenizer)
self.raw_data = raw_dataset
self.length = len(self.raw_data)
LOGGER.info(f"Single dataset size is {self.length}")
def __len__(self):
return self.length
def __getitem__(self, i):
raw_data = self.raw_data[i]
elem = self.data_processor(
data_args=self.data_args, data=raw_data, tokenizer=self.tokenizer, tokenization_args=self.tokenization_args
)
if self.return_pt:
converter = lambda x: torch.from_numpy(x).to(torch.long)
converter_mask = lambda x: torch.from_numpy(x).to(torch.bool)
else:
converter = lambda x: x
converter_mask = lambda x: x
return dict(
input_ids=converter(elem["input_ids"]),
labels=converter(elem["labels"]),
attention_mask=converter_mask(elem["attention_mask"]),
)
@dataclass
class DatasetProcessingStats:
ds_name: str
padding_token_id: int = 0
processed_tokens: int = 0
processed_loss_tokens: int = 0
number_of_get_calls: int = 0
def update(self, data: Dict[str, Any]):
def convert_to_numpy(x):
if isinstance(x, np.ndarray):
return x
elif isinstance(x, torch.tensor):
return x.numpy()
else:
raise ValueError("DatasetProcessingStats: Type not supported")
input_ids = convert_to_numpy(data["input_ids"])
labels = convert_to_numpy(data["labels"])
self.processed_tokens += (
np.logical_and(input_ids != self.padding_token_id, input_ids != IGNORE_INDEX).astype(np.int64).sum().item()
)
self.processed_loss_tokens += (
np.logical_and(labels != self.padding_token_id, labels != IGNORE_INDEX).astype(np.int64).sum().item()
)
self.number_of_get_calls += 1
def show_data_stats(data_stats: List[DatasetProcessingStats]):
total_proc_tokens = 0
total_proc_loss_tokens = 0
total_get_calls = 0
for ds in data_stats:
total_proc_tokens += ds.processed_tokens
total_proc_loss_tokens += ds.processed_loss_tokens
total_get_calls += ds.number_of_get_calls
result = {}
for ds in data_stats:
result[ds.ds_name] = {
"processed_tokens": ds.processed_tokens,
"processed_tokens%": 100.0 * ds.processed_tokens / max(total_proc_tokens, 1),
"processed_loss_tokens": ds.processed_loss_tokens,
"processed_loss_tokens%": 100.0 * ds.processed_loss_tokens / max(total_proc_loss_tokens, 1),
"get_calls": ds.number_of_get_calls,
"get_calls%": ds.number_of_get_calls / max(total_get_calls, 1),
}
return json.dumps(result, indent=2)
class MixedTuneDataset(Dataset):
def __init__(
self,
data_args: DataArgs,
tokenizer: PreTrainedTokenizer,
tokenization_args: TokenizationArgs,
return_pt: bool = True,
mix_seed=42,
log_stats=False,
):
self.org_data_args = data_args
self.tokenizer = tokenizer
self.tokenization_args = tokenization_args
self.return_pt = return_pt
data_args = separate_data_args(data_args)
LOGGER.info(f"Will mix {len(data_args)} datasets")
self.datasets = []
total_length = 0
for da in data_args:
LOGGER.info(f"Creating dataset with config: {da}")
ds = SingleTuneDataset(
data_args=da, tokenizer=tokenizer, tokenization_args=tokenization_args, return_pt=return_pt
)
self.datasets.append(ds)
total_length += len(ds)
self.total_length = total_length
LOGGER.info(f"Cumulative dataset size is {self.total_length}")
if log_stats:
self.per_dataset_stats = [
DatasetProcessingStats(
ds_name=f"ds{ds_id}={ds.data_args.data_path}",
padding_token_id=get_padding_token(tokenizer=tokenizer),
)
for ds_id, ds in enumerate(self.datasets)
]
else:
self.per_dataset_stats = None
ds_indices = np.arange(len(self.datasets), dtype=np.int32)
if len(ds_indices) > 1:
rnd_state = np.random.get_state()
np.random.seed(mix_seed)
self.mapping = np.random.choice(
ds_indices, self.total_length, replace=True, p=self.org_data_args.data_proportions
)
np.random.set_state(rnd_state)
else:
self.mapping = np.zeros(self.total_length, dtype=np.int32)
def __len__(self):
return self.total_length
def __getitem__(self, i):
# Not perfect but simple solution
ds_id = self.mapping[i]
ds = self.datasets[ds_id]
i = i % len(ds)
result = ds[i]
if self.per_dataset_stats is not None:
self.per_dataset_stats[ds_id].update(result)
LOGGER.info(show_data_stats(self.per_dataset_stats))
return result
class DataCollator:
tokenizer: PreTrainedTokenizer
def __init__(self, tokenizer: PreTrainedTokenizer):
self.tokenizer = tokenizer
def __call__(self, inputs):
input_ids, labels, attention_masks = [], [], []
for elem in inputs:
input_ids.append(elem["input_ids"])
labels.append(elem["labels"])
attention_masks.append(elem["attention_mask"])
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=get_padding_token(self.tokenizer)
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)
return dict(input_ids=input_ids, labels=labels, attention_mask=attention_masks)