From 6863951eea5d145d12f3443eb66be3f8e9678a3a Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil Date: Mon, 13 Jan 2025 15:29:58 +0100 Subject: [PATCH] temporarily prevent comment issues --- docs/src/examples/07a-srba.jl | 6 ------ docs/src/examples/07b-community-ecfba.jl | 10 +--------- 2 files changed, 1 insertion(+), 15 deletions(-) diff --git a/docs/src/examples/07a-srba.jl b/docs/src/examples/07a-srba.jl index 76ed27ac..d03e6259 100644 --- a/docs/src/examples/07a-srba.jl +++ b/docs/src/examples/07a-srba.jl @@ -516,14 +516,10 @@ res = screen(mus, workers = [1]) do mu end # finally, we can plot the data, to see if we can recapitulate known phenomena - #= TODO - using CairoMakie - # load measured ribosome protein mass fractions ribosome_measurements = CSV.File(joinpath(data_root, "ecoli_ribosomes.tsv")) - # First, show that the predicted ribosome density matches experimental # observations, and also show that overflow metabolism occurs (latter is due to # the membrane bound). @@ -537,12 +533,10 @@ scatter!( ) lines!(ax, mus, [r.ribosome_mass / r.total_mass for r in res], label = "Model predictions") axislegend(ax, position = :lt) - ax2 = Axis(fig[2, 1], xlabel = "Growth rate, 1/h", ylabel = "Metabolite flux") lines!(ax2, mus, [r.ac_flux for r in res], label = "Acetate") lines!(ax2, mus, [abs(r.glc_flux) for r in res], label = "Glucose") lines!(ax2, mus, [abs(r.o2_flux) for r in res], label = "Oxygen") axislegend(ax2, position = :lt) fig - =# diff --git a/docs/src/examples/07b-community-ecfba.jl b/docs/src/examples/07b-community-ecfba.jl index 2986b4b9..be65f8d2 100644 --- a/docs/src/examples/07b-community-ecfba.jl +++ b/docs/src/examples/07b-community-ecfba.jl @@ -439,18 +439,15 @@ wt = simplified_enzyme_constrained_flux_balance_constraints( open_bounds_ecfbc!(wt, :EX_glc__D_e) fix_bounds_ecfbc!(wt) -eccfba_res = screen(specs. workers = [1]) do spec +eccfba_res = screen(specs, workers = [1]) do spec auxotrophe_fba(wt, spec) end #= - # ## Plot cFBA vs. ec-cFBA vs. experimental data # Now that we have simulated the models, we need to compare them to data. The # data from the paper is processed below, and then plotted. - using CairoMakie - # data from Mee et al., 2014 observed_abundances = [ # these pairings were simulated (:metA, :thrC, 17.0 / (17.0 + 80.8)), @@ -464,18 +461,15 @@ observed_abundances = [ # these pairings were simulated (:ilvA, :metA, 71.3 / (71.3 + 17.3)), ] observed_abundances = last.(observed_abundances) # in order of aa_pairs - # get maximum growth for each pairing in both simulations cfba_abs = zeros(9) # optimal abundance using cFBA eccfba_abs = zeros(9) # optimal abundance using ec-cFBA for (i, (ko1, ko2)) in enumerate(aa_pairs) x = argmax(x -> x.mu, filter(x -> haskey(x, ko1) && haskey(x, ko2), cfba_res)) cfba_abs[i] = x[ko1] / (x[ko1] + x[ko2]) - x = argmax(x -> x.mu, filter(x -> haskey(x, ko1) && haskey(x, ko2), eccfba_res)) eccfba_abs[i] = x[ko1] / (x[ko1] + x[ko2]) end - # The figure below shows that using enzyme constraints dramatically improves the # predictive validity of community simulations fig = Figure(); @@ -498,7 +492,6 @@ stem!( ) xlims!(ax, 0, 1) ylims!(ax, 0, 1) - ax2 = Axis(fig[1, 2], xlabel = "Observed composition", title = "ec-cFBA") stem!( ax2, @@ -514,5 +507,4 @@ stem!( xlims!(ax2, 0, 1) ylims!(ax2, 0, 1) fig - =#