diff --git a/Common/CUDA/RandomNumberGenerator.cu b/Common/CUDA/RandomNumberGenerator.cu new file mode 100644 index 00000000..d7d1224a --- /dev/null +++ b/Common/CUDA/RandomNumberGenerator.cu @@ -0,0 +1,193 @@ +/*------------------------------------------------------------------------- + * + * CUDA functions for random number generator + * + * Adds noise of Poisson and normal distribution to the input. + * + * CODE by Tomoyuki SADAKANE + * --------------------------------------------------------------------------- + * --------------------------------------------------------------------------- + * Copyright (c) 2015, University of Bath and CERN- European Organization for + * Nuclear Research + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its contributors + * may be used to endorse or promote products derived from this software without + * specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * --------------------------------------------------------------------------- + * + * Contact: tigre.toolbox@gmail.com + * Codes : https://github.com/CERN/TIGRE + * --------------------------------------------------------------------------- + */ + +#include +#include +#include +#include +#include + +#include "gpuUtils.hpp" +#include "RandomNumberGenerator.hpp" + +#define cudaCheckErrors(msg) \ +do { \ + cudaError_t __err = cudaGetLastError(); \ + if (__err != cudaSuccess) { \ + mexPrintf("%s \n",msg);\ + cudaDeviceReset();\ + mexErrMsgIdAndTxt("RandomNumberGenerator:",cudaGetErrorString(__err));\ + } \ +} while (0) + + +__global__ void setup_kernel(curandState *state) { + int idx = threadIdx.x + blockIdx.x * blockDim.x; + /* Each thread gets same seed, a different sequence number, no offset */ + curand_init(1234, idx, 0, &state[idx]); +} + +__global__ void GeneratePoisson(curandState *state, const float* pfIn, size_t uiLen, float* pfOut) { + int idx = threadIdx.x + blockIdx.x * blockDim.x; + /* Copy state to local memory for efficiency */ + curandState localState = state[idx]; + int iIter = (uiLen + blockDim.x*gridDim.x - 1)/(blockDim.x*gridDim.x); + for (int iI = 0; iI < iIter; ++iI) { + size_t uiPos = (size_t)blockDim.x*gridDim.x*iI+idx; + if (uiPos < uiLen) { + /* Poisson */ + unsigned int uiPoisson = curand_poisson(&localState, pfIn[uiPos]); + pfOut[uiPos] = (float)uiPoisson; + } + } + /* Copy state back to global memory */ + state[idx] = localState; +} + +__global__ void GeneratePoissonAddGaussian(curandState *state, + const float* pfIn, + size_t uiLen, + float fGaussMu, + float fGaussSigma, + float* pfOut) +{ + int idx = threadIdx.x + blockIdx.x * blockDim.x; + /* Copy state to local memory for efficiency */ + curandState localState = state[idx]; + int iIter = (uiLen + blockDim.x*gridDim.x - 1)/(blockDim.x*gridDim.x); + for (int iI = 0; iI < iIter; ++iI) { + size_t uiPos = (size_t)blockDim.x*gridDim.x*iI+idx; + if (uiPos < uiLen) { + /* Poisson */ + unsigned int uiPoisson = curand_poisson(&localState, pfIn[uiPos]); + /* Gaussian */ + float fNormal = curand_normal(&localState) * fGaussSigma + fGaussMu; + pfOut[uiPos] = fNormal + (float)uiPoisson; + } + } + /* Copy state back to global memory */ + state[idx] = localState; +} + + +template +void GetMinMax(const T_value* pfIn, size_t uiLen, T_value& tvMin, T_value& tvMax) { + tvMin = pfIn[0]; + tvMax = pfIn[0]; + T_value tvVal; + for (int iI = 1; iI < uiLen; ++iI) { + tvVal = pfIn[iI]; + if (tvMax < tvVal) { tvMax = tvVal; continue;} + if (tvMin > tvVal) { tvMin = tvVal; continue;} + } +} +void poisson_1d(const float* pfIn, size_t uiLen, float* pfOut, const GpuIds& gpuids) { + // printf("poisson_1d(pfIn = %p, uiLen = %zd, pfOut = %p)\n", pfIn, uiLen, pfOut); + float* d_pfIn = nullptr; + float* d_pfOut = nullptr; + cudaMalloc((void **)&d_pfIn, uiLen * sizeof(float)); + cudaCheckErrors("poisson_1d fail cudaMalloc 1"); + cudaMalloc((void **)&d_pfOut, uiLen * sizeof(float)); + cudaCheckErrors("poisson_1d fail cudaMalloc 2"); + cudaMemcpy(d_pfIn, pfIn, uiLen*sizeof(float), cudaMemcpyHostToDevice); + cudaCheckErrors("poisson_1d fail cudaMemcpy 1"); + + // float fMin, fMax; + // GetMinMax(pfIn, uiLen, fMin, fMax); + // printf("fMin, fMax = %f, %f\n", fMin, fMax); + curandState *curandStates = nullptr; + const int kiBlockDim = 1024; // Threads per Block + const int kiGridDim = 64;//(uiLen+kiBlockDim-1)/kiBlockDim; + cudaMalloc((void **)&curandStates, kiGridDim * kiBlockDim * sizeof(curandState)); + cudaCheckErrors("poisson_1d fail cudaMalloc 3"); + setup_kernel<<>>(curandStates); + GeneratePoisson<<>>(curandStates, d_pfIn, uiLen, d_pfOut); + cudaMemcpy(pfOut, d_pfOut, uiLen*sizeof(float), cudaMemcpyDeviceToHost); + cudaCheckErrors("poisson_1d fail cudaMemcpy 2"); + // GetMinMax(pfOut, uiLen, fMin, fMax); + // printf("fMin, fMax = %f, %f\n", fMin, fMax); + + cudaFree(d_pfIn); d_pfIn = nullptr; + cudaFree(d_pfOut); d_pfOut = nullptr; + cudaFree(curandStates); curandStates = nullptr; +} + +void poisson_gaussian_1d(const float* pfIn, + size_t uiLen, + float fGaussMu, + float fGaussSigma, + float* pfOut, + GpuIds& gpuids) +{ + // printf("poisson_gaussian_1d(pfIn = %p, uiLen = %zd, fGaussMu = %+f, fGaussSigma = %f, pfOut = %p)\n", pfIn, uiLen, fGaussMu, fGaussSigma, pfOut); + float* d_pfIn = nullptr; + float* d_pfOut = nullptr; + cudaMalloc((void **)&d_pfIn, uiLen * sizeof(float)); + cudaCheckErrors("poisson_gaussian_1d fail cudaMalloc 1"); + cudaMalloc((void **)&d_pfOut, uiLen * sizeof(float)); + cudaCheckErrors("poisson_gaussian_1d fail cudaMalloc 2"); + cudaMemcpy(d_pfIn, pfIn, uiLen*sizeof(float), cudaMemcpyHostToDevice); + cudaCheckErrors("poisson_gaussian_1d fail cudaMemcpy 1"); + + // float fMin, fMax; + // GetMinMax(pfIn, uiLen, fMin, fMax); + // printf("fMin, fMax = %f, %f\n", fMin, fMax); + curandState *curandStates = nullptr; + const int kiBlockDim = 64; // Threads per Block + const int kiGridDim = 64;//(uiLen+kiBlockDim-1)/kiBlockDim; + cudaMalloc((void **)&curandStates, kiGridDim * kiBlockDim * sizeof(curandState)); + cudaCheckErrors("poisson_gaussian_1d fail cudaMalloc 3"); + setup_kernel<<>>(curandStates); + GeneratePoissonAddGaussian<<>>(curandStates, d_pfIn, uiLen, fGaussMu, fGaussSigma, d_pfOut); + cudaMemcpy(pfOut, d_pfOut, uiLen*sizeof(float), cudaMemcpyDeviceToHost); + cudaCheckErrors("poisson_gaussian_1d fail cudaMemcpy 2"); + // GetMinMax(pfOut, uiLen, fMin, fMax); + // printf("fMin, fMax = %f, %f\n", fMin, fMax); + + + cudaFree(d_pfIn); d_pfIn = nullptr; + cudaFree(d_pfOut); d_pfOut = nullptr; + cudaFree(curandStates); curandStates = nullptr; +} diff --git a/Common/CUDA/RandomNumberGenerator.hpp b/Common/CUDA/RandomNumberGenerator.hpp new file mode 100644 index 00000000..4ba68d8d --- /dev/null +++ b/Common/CUDA/RandomNumberGenerator.hpp @@ -0,0 +1,49 @@ +/*------------------------------------------------------------------------- + * + * Header CUDA functions for random number generator + * + * Adds noise of Poisson and normal distribution to the input. + * + * CODE by Tomoyuki SADAKANE + * --------------------------------------------------------------------------- + * --------------------------------------------------------------------------- + * Copyright (c) 2015, University of Bath and CERN- European Organization for + * Nuclear Research + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its contributors + * may be used to endorse or promote products derived from this software without + * specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * --------------------------------------------------------------------------- + * + * Contact: tigre.toolbox@gmail.com + * Codes : https://github.com/CERN/TIGRE + * --------------------------------------------------------------------------- + */ + +#include "TIGRE_common.hpp" +#include "GpuIds.hpp" +void poisson_1d(const float* pfIn, size_t uiLen, float* pfOut, const GpuIds& gpuids); +void poisson_gaussian_1d(const float* pfPoissonL, size_t uiLen, float fGaussMu, float fGaussSigma, float* pfOut, GpuIds& gpuids); diff --git a/MATLAB/Compile.m b/MATLAB/Compile.m index 0390b315..c2d3054e 100644 --- a/MATLAB/Compile.m +++ b/MATLAB/Compile.m @@ -61,6 +61,7 @@ mex -largeArrayDims ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 mex -largeArrayDims ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 mex -largeArrayDims ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 + mex -largeArrayDims ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 mex -largeArrayDims ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/win64 mex -largeArrayDims ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 mex -largeArrayDims ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win64 @@ -70,6 +71,7 @@ mex ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 mex ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 mex ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 + mex ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 mex ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/win32 mex ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 mex ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/win32 @@ -83,6 +85,7 @@ mex -largeArrayDims ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 mex -largeArrayDims ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 mex -largeArrayDims ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 + mex -largeArrayDims ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 mex -largeArrayDims ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/mac64 mex -largeArrayDims ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 mex -largeArrayDims ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac64 @@ -92,6 +95,7 @@ mex ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 mex ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 mex ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 + mex ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 mex ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/mac32 mex ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 mex ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/mac32 @@ -104,6 +108,7 @@ mex -largeArrayDims ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 mex -largeArrayDims ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 mex -largeArrayDims ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 + mex -largeArrayDims ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 mex -largeArrayDims ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/linux64 mex -largeArrayDims ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 mex -largeArrayDims ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux64 @@ -113,6 +118,7 @@ mex ./Utilities/cuda_interface/minTV.cpp ../Common/CUDA/POCS_TV.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 mex ./Utilities/cuda_interface/AwminTV.cpp ../Common/CUDA/POCS_TV2.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 mex ./Utilities/cuda_interface/tvDenoise.cpp ../Common/CUDA/tvdenoising.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 + mex ./Utilities/cuda_interface/AddNoise.cpp ../Common/CUDA/RandomNumberGenerator.cu ../Common/CUDA/GpuIds.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 mex -largeArrayDims ./Utilities/IO/VarianCBCT/mexReadXim.cpp -outdir ./Mex_files/linux32 mex ./Utilities/GPU/getGpuName_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 mex ./Utilities/GPU/getGpuCount_mex.cpp ../Common/CUDA/gpuUtils.cu -outdir ./Mex_files/linux32 diff --git a/MATLAB/Utilities/addCTnoise.m b/MATLAB/Utilities/addCTnoise.m index abc69131..cfd55038 100644 --- a/MATLAB/Utilities/addCTnoise.m +++ b/MATLAB/Utilities/addCTnoise.m @@ -1,4 +1,4 @@ -function proj=addCTnoise(proj,varargin) +function proj=addCTnoise(proj, varargin) %ADDCTNOISE adds realistic noise to CT projections % addCTnoise(PROJ): adds Poisson and Gaussian noise to the input data. % @@ -7,7 +7,7 @@ % 'Poisson' : changes the average photon count for Poisson noise. Default % value is 1e5 % 'Gaussian': changes the mean and standard deviation of the electronic -% Gaussian noise. Default value is [0 10] +% Gaussian noise. Default value is [0 0.5] % % The computation of the noise projection follows % Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction @@ -33,8 +33,8 @@ %% parse inputs -opts= {'Poisson','Gaussian'}; -defaults= [ 1 , 1 ]; +opts= {'Poisson','Gaussian', 'Implementation'}; +defaults= [ 1 , 1 , 1 ]; % Check inputs nVarargs = length(varargin); @@ -71,7 +71,7 @@ I0=max(proj(:))/5; end else - if ~isscalar(val);error('CBCT:addnoise:WorngInput','Input to Poisson should be scalar');end + if ~isscalar(val);error('CBCT:addnoise:WrongInput','Input to Poisson should be scalar');end I0=val; end @@ -81,12 +81,20 @@ m=0; sigma=0.5; else - if (size(val,2)~=2);error('CBCT:addnoise:WorngInput','Input to Gaussian should be 1x2');end + if (size(val,2)~=2);error('CBCT:addnoise:WrongInput','Input to Gaussian should be 1x2');end m=val(1); sigma=val(2); end + + case 'Implementation' + if default + implementation='cuda'; + else + implementation=val; + end + otherwise - error('CBCT:addnoise:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in OS_SART_CBCT()']); + error('CBCT:addnoise:InvalidInput',['Invalid input name:', num2str(opt),'\n No such option in addCTnoise()']); end end @@ -95,20 +103,24 @@ Im=I0*exp(-proj/max(proj(:))); % Photon noise + electronic noise -if areTheseToolboxesInstalled({'MATLAB','Image Processing Toolbox'}) - Im=imnoise(Im/I0,'poisson')*I0; - Im=imnoise(Im/I0,'gaussian',m,sigma/I0)*I0; -elseif areTheseToolboxesInstalled({'MATLAB','Statistics Toolbox'}) || areTheseToolboxesInstalled({'MATLAB','Statistics and Machine Learning Toolbox'}) - Im=poissrnd(Im)+randn(size(Im)).*sigma + m; -else - warning(['You don''t have Statistic toolbox, so poisson random noise is not available in MATLAB.',... - java.lang.System.getProperty('line.separator').char,... - 'If you want to add that noise, use the following command:',... - java.lang.System.getProperty('line.separator').char,... - 'Im=poissonrandom(I0*exp(-proj)); Im(Im<0)=1e-6; proj=single(log(I0./Im));',... - java.lang.System.getProperty('line.separator').char,..., - 'With I0 ~ 10000']) - Im=randn(size(Im)).*sigma + m; % this one is slower +if strcmp(implementation, 'matlab') + if areTheseToolboxesInstalled({'MATLAB','Image Processing Toolbox'}) + %disp('Using Image Processing Toolbox'); + Im=imnoise(Im/I0,'poisson')*I0; + Im=imnoise(Im/I0,'gaussian',m,sigma/I0)*I0; + elseif areTheseToolboxesInstalled({'MATLAB','Statistics Toolbox'}) || areTheseToolboxesInstalled({'MATLAB','Statistics and Machine Learning Toolbox'}) + %disp('Using Statistics Toolbox'); + Im=poissrnd(Im)+randn(size(Im)).*sigma + m; + else + warning(['You don''t have Image Processing Toolbox nor Statistic Toolbox.',... + java.lang.System.getProperty('line.separator').char,... + 'CUDA version is used.']); + %disp('Using CUDA ..'); + Im=AddNoise(Im, m, sigma); + end +else % if implementation == 'cuda' + %disp('Using CUDA'); + Im=AddNoise(Im, m, sigma); end Im(Im<=0)=1e-6; proj=single(log(I0./Im))*max(proj(:)); diff --git a/MATLAB/Utilities/cuda_interface/AddNoise.cpp b/MATLAB/Utilities/cuda_interface/AddNoise.cpp new file mode 100644 index 00000000..e12d11e5 --- /dev/null +++ b/MATLAB/Utilities/cuda_interface/AddNoise.cpp @@ -0,0 +1,126 @@ +/*------------------------------------------------------------------------- + * + * MATLAB MEX functions for Random Number Generator. Check inputs and parses + * MATLAB data to C++ data. + * + * + * CODE by Tomoyuki SADAKANE + * +--------------------------------------------------------------------------- +--------------------------------------------------------------------------- +Copyright (c) 2015, University of Bath and CERN- European Organization for +Nuclear Research +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its contributors +may be used to endorse or promote products derived from this software without +specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + --------------------------------------------------------------------------- + +Contact: tigre.toolbox@gmail.com +Codes : https://github.com/CERN/TIGRE +--------------------------------------------------------------------------- + */ + +#include +#include +#include +#include +#include +#include +#include +#include +/** + * MEX gateway + * AddNoise(Im, mu, sigma, "gpuids", gpuids); + * poissrnd(Im)+randn(size(Im)).*sigma + mu; + */ + +void mexFunction(int nlhs, mxArray *plhs[], + int nrhs, mxArray const *prhs[]) +{ + size_t uiLen = 0; + float fGaussMu = 0; + float fGaussSigma = 0; + + GpuIds gpuids; + if (nrhs==5) { + size_t iM = mxGetM(prhs[4]); + if (iM != 1) { + mexErrMsgIdAndTxt( "CBCT:MEX:RNG:unknown","5th parameter must be a row vector."); + return; + } + size_t uiGpuCount = mxGetN(prhs[4]); + if (uiGpuCount == 0) { + mexErrMsgIdAndTxt( "CBCT:MEX:RNG:unknown","5th parameter must be a row vector."); + return; + } + int* piGpuIds = (int*)mxGetData(prhs[4]); + gpuids.SetIds(uiGpuCount, piGpuIds); + } else { + int iGpuCount = GetGpuCount(); + int* piDev = (int*)malloc(iGpuCount * sizeof(int)); + for (int iI = 0; iI < iGpuCount; ++iI) { + piDev[iI] = iI; + } + gpuids.SetIds(iGpuCount, piDev); + free(piDev); piDev = 0; + } + if (nrhs < 3) { + mexErrMsgIdAndTxt("CBCT:CUDA:RNG", "At least three input argumet required."); + } else if (nrhs==3 || nrhs==5){ + size_t mrows = mxGetM(prhs[1]); + size_t ncols = mxGetN(prhs[1]); + if (mrows!=1 || ncols !=1) { + mexErrMsgIdAndTxt("CBCT:CUDA:RNG", "2nd parameter should be 1x1"); + } + mrows = mxGetM(prhs[2]); + ncols = mxGetN(prhs[2]); + if (mrows!=1 || ncols !=1) { + mexErrMsgIdAndTxt("CBCT:CUDA:RNG", "3rd parameter should be 1x1"); + } + fGaussMu = (float)mxGetScalar(prhs[1]); + fGaussSigma = (float)mxGetScalar(prhs[2]); + } else if (nrhs>4) { + mexErrMsgIdAndTxt("CBCT:CUDA:RNG", "Too many imput argumets"); + } + /////////////// First input argumet. + // First input should be an array, whose elements are lambda. + mxArray const * const image = prhs[0]; + float* pfLambdas = static_cast(mxGetData(image)); + mwSize const numDims = mxGetNumberOfDimensions(image); // get dim of image + const mwSize *size_img= mxGetDimensions(image); //get size of image + uiLen = size_img[0]; // calculate the total length + for (int iI = 1; iI < numDims; ++iI) { + uiLen *= size_img[iI]; + } + ////////////// + //prepare outputs + // Allocte output image + plhs[0] = mxCreateNumericArray(numDims, size_img, mxSINGLE_CLASS, mxREAL); + float *imgout =(float*) mxGetPr(plhs[0]); + // call CUDA rng + poisson_gaussian_1d(pfLambdas, uiLen, fGaussMu, fGaussSigma, imgout, gpuids); +} diff --git a/Python/setup.py b/Python/setup.py index 1af6d5e4..ce282608 100644 --- a/Python/setup.py +++ b/Python/setup.py @@ -450,6 +450,28 @@ def include_headers(filename_list, sdist=False): include_dirs=[NUMPY_INCLUDE, CUDA["include"], "../Common/CUDA/"], ) + +RandomNumberGenerator_ext = Extension( + "_RandomNumberGenerator", + sources=include_headers( + [ + "../Common/CUDA/TIGRE_common.cpp", + "../Common/CUDA/RandomNumberGenerator.cu", + "../Common/CUDA/GpuIds.cpp", + "../Common/CUDA/gpuUtils.cu", + "tigre/utilities/cuda_interface/_randomNumberGenerator.pyx", + ], + sdist=sys.argv[1] == "sdist", + ), + define_macros=[("IS_FOR_PYTIGRE", None)], + library_dirs=[CUDA["lib64"]], + libraries=["cudart"], + language="c++", + runtime_library_dirs=[CUDA["lib64"]] if not IS_WINDOWS else None, + include_dirs=[NUMPY_INCLUDE, CUDA["include"], "../Common/CUDA/"], +) + + setup( name="pytigre", version="2.1.0", @@ -457,7 +479,7 @@ def include_headers(filename_list, sdist=False): packages=find_packages(), include_package_data=True, data_files=[("data", ["../Common/data/head.mat"])], - ext_modules=[Ax_ext, Atb_ext, tvdenoising_ext, minTV_ext, AwminTV_ext, gpuUtils_ext], + ext_modules=[Ax_ext, Atb_ext, tvdenoising_ext, minTV_ext, AwminTV_ext, gpuUtils_ext, RandomNumberGenerator_ext], py_modules=["tigre.py"], cmdclass={"build_ext": BuildExtension}, install_requires=["Cython", "matplotlib", "numpy", "scipy"], diff --git a/Python/tigre/utilities/CTnoise.py b/Python/tigre/utilities/CTnoise.py index 2c13ac83..0706e7c5 100644 --- a/Python/tigre/utilities/CTnoise.py +++ b/Python/tigre/utilities/CTnoise.py @@ -1,5 +1,5 @@ import numpy as np - +import _RandomNumberGenerator as RNG def add(projections, Gaussian=None, Poisson=None): @@ -21,8 +21,7 @@ def add(projections, Gaussian=None, Poisson=None): max_proj = np.max(projections) projections = Poisson * np.exp(-projections / max_proj) - projections = np.random.poisson(projections) - projections = projections + np.random.normal(Gaussian[0], Gaussian[1], size=projections.shape) + projections = RNG.add_noise(projections, Gaussian[0], Gaussian[1]) projections = -np.log(projections / Poisson) * max_proj projections = np.float32(projections) diff --git a/Python/tigre/utilities/cuda_interface/_randomNumberGenerator.pyx b/Python/tigre/utilities/cuda_interface/_randomNumberGenerator.pyx new file mode 100644 index 00000000..0e4da405 --- /dev/null +++ b/Python/tigre/utilities/cuda_interface/_randomNumberGenerator.pyx @@ -0,0 +1,92 @@ +# This file is part of the TIGRE Toolbox + +# Copyright (c) 2015, University of Bath and +# CERN-European Organization for Nuclear Research +# All rights reserved. + +# License: Open Source under BSD. +# See the full license at +# https://github.com/CERN/TIGRE/license.txt + +# Contact: tigre.toolbox@gmail.com +# Codes: https://github.com/CERN/TIGRE/ +# -------------------------------------------------------------------------- +# Coded by: Tomoyuki SADAKANE + +cimport numpy as np +import numpy as np +from tigre.utilities.errors import TigreCudaCallError +from tigre.utilities.cuda_interface._gpuUtils cimport GpuIds as c_GpuIds, convert_to_c_gpuids, free_c_gpuids + +np.import_array() + +from libc.stdlib cimport malloc, free + +cdef extern from "numpy/arrayobject.h": + void PyArray_ENABLEFLAGS(np.ndarray arr, int flags) + void PyArray_CLEARFLAGS(np.ndarray arr, int flags) + +cdef extern from "RandomNumberGenerator.hpp": + cdef void poisson_1d(float* img, size_t uiLen, float* dst, c_GpuIds gpuids) + cdef void poisson_gaussian_1d(float* img, size_t uiLen, float fGaussMu, float fGaussSigma, float* dst, c_GpuIds gpuids) + +def cuda_raise_errors(error_code): + if error_code: + raise TigreCudaCallError('RandomNumberGenerator::', error_code) + +def add_poisson(np.ndarray[np.float32_t, ndim=3] src, gpuids=None): + # print("add_poisson()") + cdef c_GpuIds* c_gpuids = convert_to_c_gpuids(gpuids) + if not c_gpuids: + raise MemoryError() + + cdef np.npy_intp size_img[3] + size_img[0]= src.shape[0] + size_img[1]= src.shape[1] + size_img[2]= src.shape[2] + + cdef float* c_imgout = malloc(size_img[0] *size_img[1] *size_img[2]* sizeof(float)) + + cdef long imgsize[3] + imgsize[0] = size_img[2] + imgsize[1] = size_img[1] + imgsize[2] = size_img[0] + + cdef float* c_src = src.data + cdef np.npy_intp c_uiSigLen = (size_img[0] *size_img[1] *size_img[2]) + cuda_raise_errors(poisson_1d(c_src, c_uiSigLen, c_imgout, c_gpuids[0])) + imgout = np.PyArray_SimpleNewFromData(3, size_img, np.NPY_FLOAT32, c_imgout) + PyArray_ENABLEFLAGS(imgout, np.NPY_OWNDATA) + + return imgout + +def add_noise(np.ndarray[np.float32_t, ndim=3] poisson_lambda, + np.float32_t gaussian_mu, + np.float32_t gaussian_sigma, + gpuids=None): + # print("add_noise()") + cdef c_GpuIds* c_gpuids = convert_to_c_gpuids(gpuids) + if not c_gpuids: + raise MemoryError() + + cdef np.npy_intp size_img[3] + size_img[0]= poisson_lambda.shape[0] + size_img[1]= poisson_lambda.shape[1] + size_img[2]= poisson_lambda.shape[2] + + cdef float* c_imgout = malloc(size_img[0] *size_img[1] *size_img[2]* sizeof(float)) + + cdef long imgsize[3] + imgsize[0] = size_img[2] + imgsize[1] = size_img[1] + imgsize[2] = size_img[0] + + cdef float* c_src = poisson_lambda.data + cdef np.npy_intp c_uiSigLen = (size_img[0] *size_img[1] *size_img[2]) + cdef np.float32_t c_fGaussMu = gaussian_mu + cdef np.float32_t c_fGaussSigma = gaussian_sigma + cuda_raise_errors(poisson_gaussian_1d(c_src, c_uiSigLen, c_fGaussMu, c_fGaussSigma, c_imgout, c_gpuids[0])) + imgout = np.PyArray_SimpleNewFromData(3, size_img, np.NPY_FLOAT32, c_imgout) + PyArray_ENABLEFLAGS(imgout, np.NPY_OWNDATA) + + return imgout diff --git a/changelog.md b/changelog.md index ae430115..f4bd95c4 100644 --- a/changelog.md +++ b/changelog.md @@ -14,6 +14,7 @@ Many contributors have made this possible. Sincere thanks. - Code quality optional code added, to be able to maintain decent python. - Demos for python available - Add 3D Shepp-Logan head phantom to Python. +- Replace noise generator with CUDA implementation. ## BugFix