-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sup.py
217 lines (177 loc) · 8.48 KB
/
train_sup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 19 14:57:26 2023
@author: Chen Ming
"""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '-1'
import random
# import time
from typing import Dict, List
# import jsonlines
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from loguru import logger
from scipy.stats import spearmanr
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import BertConfig, BertModel, BertTokenizer
from simcse.hyperparameters import Hyperparameters as hp
from simcse.utils import load_data_new, load_snli_data
from simcse.networks import SimCSEModelSup
tokenizer = BertTokenizer.from_pretrained(hp.pretrained_model_path, use_fast=True)
# 加载数据集
datasets_sts = {
'STS-B-train': load_data_new('F:/celery/datasets/chn/senteval_cn/STS-B/STS-B.train.data'),
'STS-B-test': load_data_new('F:/celery/datasets/chn/senteval_cn/STS-B/STS-B.test.data'),
'STS-B-valid': load_data_new('F:/celery/datasets/chn/senteval_cn/STS-B/STS-B.valid.data')
}
datasets_lqcmc = {
'LCQMC-train': load_data_new('F:/celery/datasets/chn/senteval_cn/LCQMC/LCQMC.train.data'),
'LCQMC-test': load_data_new('F:/celery/datasets/chn/senteval_cn/LCQMC/LCQMC.test.data'),
'LCQMC-valid': load_data_new('F:/celery/datasets/chn/senteval_cn/LCQMC/LCQMC.valid.data')
}
datasets_snli = {
'SNLI-train': load_snli_data('F:/celery/datasets/chn/senteval_cn/SNLI/train.txt'),
'SNLI-test': load_snli_data('F:/celery/datasets/chn/senteval_cn/SNLI/test.txt'),
'SNLI-valid': load_snli_data('F:/celery/datasets/chn/senteval_cn/SNLI/dev.txt')
}
class TrainDataset(Dataset):
"""训练数据集, 重写__getitem__和__len__方法
"""
def __init__(self, data: List):
self.data = data
def __len__(self):
return len(self.data)
def text_2_id(self, text: str):
return tokenizer([text[0], text[1], text[2]], max_length=hp.MAXLEN,
truncation=True, padding='max_length', return_tensors='pt')
def __getitem__(self, index: int):
return self.text_2_id(self.data[index])
class TestDataset(Dataset):
"""测试数据集, 重写__getitem__和__len__方法
"""
def __init__(self, data: List):
self.data = data
def __len__(self):
return len(self.data)
def text_2_id(self, text: str):
return tokenizer(text, max_length=hp.MAXLEN, truncation=True,
padding='max_length', return_tensors='pt')
def __getitem__(self, index):
line = self.data[index]
return self.text_2_id([line[0]]), self.text_2_id([line[1]]), int(line[2])
def simcse_sup_loss(y_pred):
"""
有监督的损失函数
y_pred (tensor): bert的输出, [batch_size * 3, 768]
"""
# 得到y_pred对应的label, 每第三句没有label, 跳过, label= [1, 0, 4, 3, ...]
y_true = torch.arange(y_pred.shape[0], device=hp.DEVICE)
use_row = torch.where((y_true + 1) % 3 != 0)[0]
y_true = (use_row - use_row % 3 * 2) + 1
# batch内两两计算相似度, 得到相似度矩阵(对角矩阵)
sim = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=-1)
# 将相似度矩阵对角线置为很小的值, 消除自身的影响
sim = sim - torch.eye(y_pred.shape[0], device=hp.DEVICE) * 1e12
# 选取有效的行
sim = torch.index_select(sim, 0, use_row)
# 相似度矩阵除以温度系数
sim = sim / 0.05
# 计算相似度矩阵与y_true的交叉熵损失
loss = F.cross_entropy(sim, y_true)
return loss
def eval_spearmanr(model, dataloader) -> float:
"""模型评估函数
批量预测, 计算cos_sim, 转成numpy数组拼接起来, 一次性求spearman相关度
"""
model.eval()
sim_tensor = torch.tensor([], device=hp.DEVICE)
label_array = np.array([])
with torch.no_grad():
for source, target, label in dataloader:
# source [batch, 1, seq_len] -> [batch, seq_len]
source_input_ids = source['input_ids'].squeeze(1).to(hp.DEVICE)
source_attention_mask = source['attention_mask'].squeeze(1).to(hp.DEVICE)
source_token_type_ids = source['token_type_ids'].squeeze(1).to(hp.DEVICE)
source_pred = model(source_input_ids, source_attention_mask, source_token_type_ids)
# target [batch, 1, seq_len] -> [batch, seq_len]
target_input_ids = target['input_ids'].squeeze(1).to(hp.DEVICE)
target_attention_mask = target['attention_mask'].squeeze(1).to(hp.DEVICE)
target_token_type_ids = target['token_type_ids'].squeeze(1).to(hp.DEVICE)
target_pred = model(target_input_ids, target_attention_mask, target_token_type_ids)
# concat
sim = F.cosine_similarity(source_pred, target_pred, dim=-1)
sim_tensor = torch.cat((sim_tensor, sim), dim=0)
label_array = np.append(label_array, np.array(label))
# corrcoef
return spearmanr(label_array, sim_tensor.cpu().numpy()).correlation
def train(model, train_dl, dev_dl, optimizer) -> None:
"""模型训练
"""
model.train()
global best
early_stop_batch = 0
for batch_idx, source in enumerate(tqdm(train_dl), start=1):
# 维度转换 [batch, 3, seq_len] -> [batch * 3, sql_len]
real_batch_num = source.get('input_ids').shape[0]
input_ids = source.get('input_ids').view(real_batch_num * 3, -1).to(hp.DEVICE)
attention_mask = source.get('attention_mask').view(real_batch_num * 3, -1).to(hp.DEVICE)
token_type_ids = source.get('token_type_ids').view(real_batch_num * 3, -1).to(hp.DEVICE)
# 训练
out = model(input_ids, attention_mask, token_type_ids)
loss = simcse_sup_loss(out)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 评估
if batch_idx % 10 == 0:
logger.info(f'loss: {loss.item():.4f}')
corrcoef = eval_spearmanr(model, dev_dl)
model.train()
if best < corrcoef:
early_stop_batch = 0
best = corrcoef
torch.save(model.state_dict(), hp.SAVE_PATH_SUP)# + str(batch_idx)
logger.info(f"higher corrcoef: {best:.4f} in batch: {batch_idx}, save model")
continue
early_stop_batch += 1
if early_stop_batch == 10:
logger.info(f"corrcoef doesn't improve for {early_stop_batch} batch, early stop!")
logger.info(f"train use sample number: {(batch_idx - 10) * hp.BATCH_SIZE}")
return
if __name__ == '__main__':
logger.info(f'device: {hp.DEVICE}, pooling: {hp.POOLING}, model path: {hp.pretrained_model_path}')
tokenizer = BertTokenizer.from_pretrained(hp.pretrained_model_path)
# load data (train)
train_data = datasets_snli['SNLI-train']
# train_data = datasets_lqcmc['LCQMC-train']
random.shuffle(train_data)
# load data (test)
# dev_data = load_data('sts', STS_DEV)
# test_data = load_data('sts', STS_TEST)
dev_data = datasets_sts['STS-B-valid']
test_data = datasets_sts['STS-B-test']
#
train_dataloader = DataLoader(TrainDataset(train_data), batch_size=hp.BATCH_SIZE)
dev_dataloader = DataLoader(TestDataset(dev_data), batch_size=hp.BATCH_SIZE)
test_dataloader = DataLoader(TestDataset(test_data), batch_size=hp.BATCH_SIZE)
# load model
assert hp.POOLING in ['cls', 'pooler', 'last-avg', 'first-last-avg']
model = SimCSEModelSup(pretrained_model=hp.pretrained_model_path, pooling=hp.POOLING)
model.to(hp.DEVICE)
optimizer = torch.optim.AdamW(model.parameters(), lr=hp.LR)
# train
best = 0
for epoch in range(hp.EPOCHS):
logger.info(f'epoch: {epoch}')
train(model, train_dataloader, dev_dataloader, optimizer)
logger.info(f'train is finished, best model is saved at {hp.SAVE_PATH_SUP}')
# eval
model.load_state_dict(torch.load(hp.SAVE_PATH_SUP))
dev_corrcoef = eval_spearmanr(model, dev_dataloader)
test_corrcoef = eval_spearmanr(model, test_dataloader)
logger.info(f'dev_corrcoef: {dev_corrcoef:.4f}')
logger.info(f'test_corrcoef: {test_corrcoef:.4f}')