-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathgeneticalg.cpp
420 lines (314 loc) · 10.2 KB
/
geneticalg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <memory.h>
#include <math.h>
#include "geneticalg.h"
extern void fast_random_seed(unsigned int seed);
extern int RANDOM_LONG2(int lLow, int lHigh);
extern float RANDOM_FLOAT2(float flLow, float flHigh);
static int get_random_int(int x,int y)
{
return RANDOM_LONG2(x, y);
}
// return random value in range 0 < n < 1
static double get_random(void)
{
return RANDOM_FLOAT2(0.0, 1.0);
}
// return random value in range -1 < n < 1
static double get_random_weight(void)
{
return get_random() - get_random();
}
/******************************************************************* CGenome */
void CGenome::copy_from(const CGenome &from)
{
int i;
for (i = 0; i < m_genome_length; i++)
m_genes[i] = from.m_genes[i];
m_fitness = from.m_fitness;
}
/*************************************************************** CPopulation */
CPopulation::CPopulation(int population_size, int genome_length):
m_pop_size(population_size),
m_individuals(NULL),
m_genome_length(genome_length),
m_pool_size(population_size * genome_length),
m_genepool(NULL)
{
int i;
m_individuals = new CGenome[m_pop_size];
m_genepool = (double *)calloc(1, sizeof(double) * m_pool_size);
for (i = 0; i < m_pop_size; i++)
m_individuals[i] = CGenome(&m_genepool[i * m_genome_length], m_genome_length, 0.0);
for (i = 0; i < m_pool_size; i++)
m_genepool[i] = get_random_weight();
}
void CPopulation::free_mem(void)
{
if (m_individuals) {
delete[] m_individuals;
m_individuals = NULL;
}
if (m_genepool) {
free(m_genepool);
m_genepool = NULL;
}
}
CGenome *CPopulation::get_fittest_individual(void)
{
double highest;
int highest_idx;
int i;
if (m_pop_size == 0)
return NULL;
highest = m_individuals[0].m_fitness;
highest_idx = 0;
for (i = 1; i < m_pop_size; i++) {
if (highest < m_individuals[i].m_fitness) {
highest = m_individuals[i].m_fitness;
highest_idx = i;
}
}
return &m_individuals[highest_idx];
}
/********************************************************* CGeneticAlgorithm */
int CGeneticAlgorithm::get_crossover_interleave(int num_genes)
{
if (m_crossover_interleave > num_genes)
return num_genes;
if (m_crossover_interleave < 1)
return get_random_int(1, num_genes + 1);
return m_crossover_interleave;
}
void CGeneticAlgorithm::crossover(CGenome &parent1, CGenome &parent2, CGenome &child1, CGenome &child2)
{
int num_genes = parent1.length();
int i, j;
if (&parent1 == &parent2 || get_random() < m_crossover_rate) {
child1.copy_from(parent1);
child2.copy_from(parent2);
return;
}
// split genome into chromosomes
int gene_pos = 0;
int num_chromos = get_crossover_interleave(num_genes);
int num_genes_per_chromo = num_genes / num_chromos;
int num_genes_last_chromo = num_genes - num_chromos * num_genes_per_chromo;
for (i = 0; i < num_chromos; i++, gene_pos += num_genes_per_chromo) {
int cp = get_random_int(0, num_genes_per_chromo - 1);
// create new chromosome
for (j = 0; j < cp; j++) {
child1.m_genes[gene_pos + j] = parent1.m_genes[gene_pos + j];
child2.m_genes[gene_pos + j] = parent2.m_genes[gene_pos + j];
}
for (j = cp; j < num_genes_per_chromo; j++)
{
child1.m_genes[gene_pos + j] = parent2.m_genes[gene_pos + j];
child2.m_genes[gene_pos + j] = parent1.m_genes[gene_pos + j];
}
}
if (num_genes_last_chromo > 0) {
int cp = get_random_int(0, num_genes_last_chromo - 1);
// create new chromosome
for (j = 0; j < cp; j++) {
child1.m_genes[gene_pos + j] = parent1.m_genes[gene_pos + j];
child2.m_genes[gene_pos + j] = parent2.m_genes[gene_pos + j];
}
for (j = cp; j < num_genes_last_chromo; j++)
{
child1.m_genes[gene_pos + j] = parent2.m_genes[gene_pos + j];
child2.m_genes[gene_pos + j] = parent1.m_genes[gene_pos + j];
}
}
/*
// use fitness of parent which has it lowest
child1.m_fitness = parent1.m_fitness < parent2.m_fitness ? parent1.m_fitness : parent2.m_fitness;
child2.m_fitness = parent1.m_fitness < parent2.m_fitness ? parent1.m_fitness : parent2.m_fitness;
*/
child1.m_fitness = 0.0;
child2.m_fitness = 0.0;
}
void CGeneticAlgorithm::mutate(CGenome &individual)
{
int num_genes = m_population->get_genome_length();
int i;
// traverse the chromosome and mutate each weight dependent on the mutation rate
for (i = 0; i < num_genes; i++) {
//do we perturb this gene
if (get_random() < m_mutation_rate) {
//add or subtract a small value to the gene
// individual.m_genes[i] += get_random_weight() * m_max_perturbation;
if (fabs(individual.m_genes[i]) > 1.0)
individual.m_genes[i] += get_random_weight() * fabs(individual.m_genes[i]) * m_max_perturbation;
else
individual.m_genes[i] += get_random_weight() * m_max_perturbation;
}
}
}
CGenome *CGeneticAlgorithm::get_individual_random_weighted(void)
{
int i;
double fitness_pos = 0.0;
double slice = get_random() * m_total_fitness;
for (i = 0; i < m_population->get_size(); i++) {
fitness_pos += m_population->get_fitness_of(i);
// if the fitness so far > random number return the genome at this point
if (fitness_pos >= slice) {
if (i == 0)
return m_population->get_individual(i); // slice == 0.0
else
return m_population->get_individual(i - 1);
}
}
return m_population->get_individual(i - 1);
}
CGenome *CGeneticAlgorithm::get_individual_random(void)
{
return m_population->get_individual(get_random_int(0, m_population->get_size()-1));
}
int CGeneticAlgorithm::grab_num_best(const int num_best, const int num_copies, CPopulation &population, int pop_pos)
{
int i, j, count = 0;
CGenome *elite;
CGenome *target;
// add the required amount of copies of the n most fittest to the supplied vector
for (i = 0; i < num_best && i < m_population->get_size(); i++) {
for (j = 0; j < num_copies; j++) {
int eidx = m_population->get_size() - 1 - i;
int tidx = pop_pos + count;
if (tidx >= population.get_size())
return population.get_size();
elite = m_population->get_individual(eidx);
target = population.get_individual(tidx);
target->copy_from(*elite);
target->m_fitness = 0.0;
count++;
}
}
return pop_pos + count;
}
int CGeneticAlgorithm::add_random_genome(CPopulation &population, int pop_pos)
{
int i, j, count = 0;
CGenome *target;
for (i = 0; i < m_num_new_random; i++) {
if (pop_pos + count >= population.get_size())
return population.get_size();
target = population.get_individual(pop_pos + count);
for (j = 0; j < target->length(); j++)
target->m_genes[j] = get_random_weight();
count++;
}
return pop_pos + count;
}
void CGeneticAlgorithm::calculate_fitness_values(void)
{
int i;
double highest;
double lowest;
m_total_fitness = 0;
highest = m_population->get_fitness_of(0);
m_fittest_individual = 0;
m_best_fitness = highest;
lowest = m_population->get_fitness_of(0); m_worst_fitness = lowest;
m_total_fitness = m_population->get_fitness_of(0);
for (i = 1; i < m_population->get_size(); i++) {
// update fittest if necessary
if (m_population->get_fitness_of(i) > highest) {
highest = m_population->get_fitness_of(i);
m_fittest_individual = i;
m_best_fitness = highest;
}
// update worst if necessary
if (m_population->get_fitness_of(i) < lowest) { lowest = m_population->get_fitness_of(i); m_worst_fitness = lowest; }
m_total_fitness += m_population->get_fitness_of(i);
}
m_average_fitness = m_total_fitness / m_population->get_size();
}
void CGeneticAlgorithm::reset_fitness_values(void)
{
m_total_fitness = 0;
m_best_fitness = 0;
m_worst_fitness = 9999999999.9;
m_average_fitness = 0;
}
int CGeneticAlgorithm::fitness_sort(const CGenome *a, const CGenome *b)
{
/*
if (a->m_fitness < b->m_fitness)
return -1;
if (a->m_fitness > b->m_fitness)
return 1;
return 0;
*/
return (a->m_fitness > b->m_fitness) - (a->m_fitness < b->m_fitness);
}
CPopulation *CGeneticAlgorithm::epoch(CPopulation &old_pop, CPopulation &new_pop)
{
int i, new_pos = 0;
double *tmp_child_mem = NULL;
CGenome tmp_child;
if (old_pop.get_size() != new_pop.get_size()) {
printf("CGeneticAlgorithm::epoch(): ERROR, different size populations\n");
return NULL;
}
if (old_pop.get_genome_length() != new_pop.get_genome_length()) {
printf("CGeneticAlgorithm::epoch(): ERROR, different size genomes\n");
return NULL;
}
m_generation++;
// assign the given population to the classes population
m_population = &old_pop;
// reset the appropriate variables
reset_fitness_values();
// sort the population (for scaling and elitism)
qsort(m_population->get_individual(0), m_population->get_size(), sizeof(CGenome), (int(*)(const void*, const void*))&CGeneticAlgorithm::fitness_sort);
// calculate best, worst, average and total fitness
calculate_fitness_values();
/*
printf(" best: %f\n", m_best_fitness);
printf(" avg: %f\n", m_average_fitness);
printf("worst: %f\n", m_worst_fitness);
printf("total: %f\n", m_total_fitness);
for (i = 0; i < old_pop.get_size(); i++)
printf(" fitness[%i]: %f\n", i, old_pop.get_fitness_of(i));
*/
// now to add a little elitism we shall add in some copies of the fittest genomes.
new_pos = grab_num_best(m_num_elite, m_num_copies_elite, new_pop, new_pos);
// add some completely new creatures to generate new genes
new_pos = add_random_genome(new_pop, new_pos);
// repeat until a new population is generated
for (i = new_pos; i < new_pop.get_size(); i++)
{
CGenome *parent1, *parent2, *child1, *child2;
parent1 = get_individual_random();
parent2 = get_individual_random_weighted();
// get target genomes
child1 = new_pop.get_individual(i);
if (++i >= new_pop.get_size()) {
// use temporary
if (!tmp_child_mem)
tmp_child_mem = (double *)malloc(sizeof(double) * parent1->length());
tmp_child = CGenome(tmp_child_mem, parent1->length(), 0.0);
child2 = &tmp_child;
} else
child2 = new_pop.get_individual(i);
crossover(*parent1, *parent2, *child1, *child2);
mutate(*child1);
mutate(*child2);
child1->m_fitness = 0.0;
child2->m_fitness = 0.0;
}
m_population = &new_pop;
if (tmp_child_mem)
free(tmp_child_mem);
// sort the population (for scaling and elitism)
qsort(m_population->get_individual(0), m_population->get_size(), sizeof(CGenome), (int(*)(const void*, const void*))&CGeneticAlgorithm::fitness_sort);
return m_population;
}