-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfractalnoise.c
226 lines (210 loc) · 9.71 KB
/
fractalnoise.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "quakedef.h"
void fractalnoise(unsigned char *noise, int size, int startgrid)
{
int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
int *noisebuf;
#define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
for (sizepower = 0;(1 << sizepower) < size;sizepower++);
if (size != (1 << sizepower))
{
Con_Printf("fractalnoise: size must be power of 2\n");
return;
}
for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
if (startgrid != (1 << gridpower))
{
Con_Printf("fractalnoise: grid must be power of 2\n");
return;
}
startgrid = bound(0, startgrid, size);
amplitude = 0xFFFF; // this gets halved before use
noisebuf = (int *)Mem_Alloc(tempmempool, size*size*sizeof(int));
memset(noisebuf, 0, size*size*sizeof(int));
for (g2 = startgrid;g2;g2 >>= 1)
{
// brownian motion (at every smaller level there is random behavior)
amplitude >>= 1;
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
n(x,y) += (rand()&litude);
g = g2 >> 1;
if (g)
{
// subdivide, diamond-square algorithm (really this has little to do with squares)
// diamond
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
// square
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
{
n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
}
}
}
// find range of noise values
min = max = 0;
for (y = 0;y < size;y++)
for (x = 0;x < size;x++)
{
if (n(x,y) < min) min = n(x,y);
if (n(x,y) > max) max = n(x,y);
}
max -= min;
max++;
// normalize noise and copy to output
for (y = 0;y < size;y++)
for (x = 0;x < size;x++)
*noise++ = (unsigned char) (((n(x,y) - min) * 256) / max);
Mem_Free(noisebuf);
#undef n
}
// unnormalized, used for explosions mainly, does not allocate/free memory (hence the name quick)
void fractalnoisequick(unsigned char *noise, int size, int startgrid)
{
int x, y, g, g2, amplitude, size1 = size - 1, sizepower, gridpower;
#define n(x,y) noise[((y)&size1)*size+((x)&size1)]
for (sizepower = 0;(1 << sizepower) < size;sizepower++);
if (size != (1 << sizepower))
{
Con_Printf("fractalnoise: size must be power of 2\n");
return;
}
for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
if (startgrid != (1 << gridpower))
{
Con_Printf("fractalnoise: grid must be power of 2\n");
return;
}
startgrid = bound(0, startgrid, size);
amplitude = 255; // this gets halved before use
memset(noise, 0, size*size);
for (g2 = startgrid;g2;g2 >>= 1)
{
// brownian motion (at every smaller level there is random behavior)
amplitude >>= 1;
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
n(x,y) += (rand()&litude);
g = g2 >> 1;
if (g)
{
// subdivide, diamond-square algorithm (really this has little to do with squares)
// diamond
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
n(x+g,y+g) = (unsigned char) (((int) n(x,y) + (int) n(x+g2,y) + (int) n(x,y+g2) + (int) n(x+g2,y+g2)) >> 2);
// square
for (y = 0;y < size;y += g2)
for (x = 0;x < size;x += g2)
{
n(x+g,y) = (unsigned char) (((int) n(x,y) + (int) n(x+g2,y) + (int) n(x+g,y-g) + (int) n(x+g,y+g)) >> 2);
n(x,y+g) = (unsigned char) (((int) n(x,y) + (int) n(x,y+g2) + (int) n(x-g,y+g) + (int) n(x+g,y+g)) >> 2);
}
}
}
#undef n
}
#define NOISE_SIZE 256
#define NOISE_MASK 255
float noise4f(float x, float y, float z, float w)
{
int i;
int index[4][2];
float frac[4][2];
float v[4];
static float noisetable[NOISE_SIZE];
static int r[NOISE_SIZE];
// LordHavoc: this is inspired by code I saw in Quake3, however I think my
// version is much cleaner and substantially faster as well
//
// the following changes were made:
// 1. for the permutation indexing (r[] array in this code) I substituted
// the ^ operator (which never overflows) for the original addition and
// masking code, this should not have any effect on quality.
// 2. removed the outermost randomization array lookup.
// (it really wasn't necessary, it's fine if X indexes the array
// directly without permutation indexing)
// 3. reimplemented the blending using frac[] arrays rather than a macro.
// (the original macro read one parameter twice - not good)
// 4. cleaned up the code by using 4 nested loops to make it read nicer
// (but then I unrolled it completely for speed, it still looks nicer).
if (!noisetable[0])
{
// noisetable is a random-ish series of float values in +/- 1 range
for (i = 0;i < NOISE_SIZE;i++)
noisetable[i] = (rand() / (double)RAND_MAX) * 2 - 1;
// r is a remapping table to make each dimension of the index have different indexing behavior
for (i = 0;i < NOISE_SIZE;i++)
r[i] = (int)(rand() * (double)NOISE_SIZE / ((double)RAND_MAX + 1)) & NOISE_MASK;
// that & is only needed if RAND_MAX is > the range of double, which isn't the case on most platforms
}
frac[0][1] = x - floor(x);index[0][0] = ((int)floor(x)) & NOISE_MASK;
frac[1][1] = y - floor(y);index[1][0] = ((int)floor(y)) & NOISE_MASK;
frac[2][1] = z - floor(z);index[2][0] = ((int)floor(z)) & NOISE_MASK;
frac[3][1] = w - floor(w);index[3][0] = ((int)floor(w)) & NOISE_MASK;
for (i = 0;i < 4;i++)
frac[i][0] = 1 - frac[i][1];
for (i = 0;i < 4;i++)
index[i][1] = (index[i][0] < NOISE_SIZE - 1) ? (index[i][0] + 1) : 0;
#if 1
// short version
v[0] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]);
v[1] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]);
v[2] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]);
v[3] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]);
return frac[3][0] * (frac[2][0] * v[0] + frac[2][1] * v[1]) + frac[3][1] * (frac[2][0] * v[2] + frac[2][1] * v[3]);
#elif 1
// longer version
v[ 0] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]];
v[ 1] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]];
v[ 2] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]];
v[ 3] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]];
v[ 4] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]];
v[ 5] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]];
v[ 6] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]];
v[ 7] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]];
v[ 8] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]];
v[ 9] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]];
v[10] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]];
v[11] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]];
v[12] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]];
v[13] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]];
v[14] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]];
v[15] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]];
v[16] = frac[0][0] * v[ 0] + frac[0][1] * v[ 1];
v[17] = frac[0][0] * v[ 2] + frac[0][1] * v[ 3];
v[18] = frac[0][0] * v[ 4] + frac[0][1] * v[ 5];
v[19] = frac[0][0] * v[ 6] + frac[0][1] * v[ 7];
v[20] = frac[0][0] * v[ 8] + frac[0][1] * v[ 9];
v[21] = frac[0][0] * v[10] + frac[0][1] * v[11];
v[22] = frac[0][0] * v[12] + frac[0][1] * v[13];
v[23] = frac[0][0] * v[14] + frac[0][1] * v[15];
v[24] = frac[1][0] * v[16] + frac[1][1] * v[17];
v[25] = frac[1][0] * v[18] + frac[1][1] * v[19];
v[26] = frac[1][0] * v[20] + frac[1][1] * v[21];
v[27] = frac[1][0] * v[22] + frac[1][1] * v[23];
v[28] = frac[2][0] * v[24] + frac[2][1] * v[25];
v[29] = frac[2][0] * v[26] + frac[2][1] * v[27];
return frac[3][0] * v[28] + frac[3][1] * v[29];
#else
// the algorithm...
for (l = 0;l < 2;l++)
{
for (k = 0;k < 2;k++)
{
for (j = 0;j < 2;j++)
{
for (i = 0;i < 2;i++)
v[l][k][j][i] = noisetable[r[r[r[index[l][3]] ^ index[k][2]] ^ index[j][1]] ^ index[i][0]];
v[l][k][j][2] = frac[0][0] * v[l][k][j][0] + frac[0][1] * v[l][k][j][1];
}
v[l][k][2][2] = frac[1][0] * v[l][k][0][2] + frac[1][1] * v[l][k][1][2];
}
v[l][2][2][2] = frac[2][0] * v[l][0][2][2] + frac[2][1] * v[l][1][2][2];
}
v[2][2][2][2] = frac[3][0] * v[0][2][2][2] + frac[3][1] * v[1][2][2][2];
#endif
}