Skip to content

Latest commit

 

History

History
432 lines (363 loc) · 15 KB

PARAMETERS.md

File metadata and controls

432 lines (363 loc) · 15 KB

UCNS3D.DAT: Parameters

DETAILED PARAMETERS VALUES

DIMENSIONA = DIMENSIONS OF PROBLEM

       POSSIBLE VALUES= 2 --> 2D problem
                        3 --> 3D problem

STATISTICS = PARALLEL SCALABILITY STATISTICS

      POSSIBLE VALUES= 0 --> disabled statistics collection
                       1 --> enabled statistics collection (expensive)

CODE_PROFILE = customisable CODE PROFILE selected

      POSSIBLE VALUES= 0  --> default values
                       1  --> jacobi for DDES
                       11 --> matrix free lu-sgs for DDES
                       9  --> jacobi for RANS
                       91 --> matrix free lu-sgs for RANS

governingequations = TYPE OF EQUATIONS TO BE SOLVED

      POSSIBLE VALUES= 1 --> Navier-Stokes
                       2 --> Euler
                       3 --> Linear Advection equation
                       4 --> Gradient approximation sample equation
                      -1 --> Multicomponent Euler equations

turbulence= TURBULENCE MODEL

        POSSIBLE VALUES= 0 --> Deactivated
                         1 --> Active

icoupleturb= COUPLING OF TURBULENCE MODEL

        POSSIBLE VALUES= 0 --> DECOUPLED (DEFAULT)
                         1 --> COUPLED

PASSIVESCALAR= NUMBER OF PASSIVE SCALARS

        POSSIBLE VALUES= 0 --> DEACTIVATED
                         1,2,3,..,N --> As many required, but only the first one is written in output file

RRES= DENSITY VALUE AT FREE STREAM

        POSSIBLE VALUES=  --> Any positive value

ufreestream= U FREESTREAM VALUE

        POSSIBLE VALUES= --> Any value

VVEL= V FREESTREAM VALUE

        POSSIBLE VALUES= --> Any value

WVEL= W FREESTREAM VALUE

        POSSIBLE VALUES= --> Any value

PRES= PRESSURE FREESTREAM VALUE

        POSSIBLE VALUES= --> Any positive value
                         -1 --> It will set pressure at P=RRES/GAMMA, 
                         resulting in SPEED OF SOUND=1, AND Ufreestream=Mach number

AOA= ANGLE OF ATTACK

        POSSIBLE VALUES=  --> ANY VALUE

vectorx,vectory,vectorz=

SELECT WITH RESPECT TO WHICH AXIS THE ANGLE OF ATTACK IS DEFINED (XY,XZ AND SET ACCORDINGLY THE VALUES)

	POSSIBLE VALUES=  -->  1 1 0 FOR XY
			  -->  1 0 1 FOR XZ
			  -->  0 1 1 FOR YZ

GAMMA= USED FOR SINGLE COMPONENT FLUIDS

        POSSIBLE VALUES=  --> ANY VALUE

PRANDTL= PRANDTL CONSTANT

        POSSIBLE VALUES= --> ANY VALUE

Reynolds= REYNOLDS NUMBER

        POSSIBLE VALUES= The value is defined as (Re=(RRES*UFREESTREAM*CHARLENGTH)/(VISC)),
        and it is used to determing the freestream value of viscosity

CharLength= CHARACTERISTIC LENGTH

        POSSIBLE VALUES= --> ANY VALUE

spatiladiscret= DEFINE THE TYPE OF SCHEME THAT WILL BE USED

        POSSIBLE VALUES= 1 --> CENTRAL SCHEME NO LIMITER
                         2 --> MUSCL (DEFAULT)
                         3 --> WENO VARIANTS

iRiemann= APPROXIMATE RIEMANN SOLVERS

        POSSIBLE VALUES= 1 --> HLLC
                         2 --> RUSANOV(LLF)
                         3 --> ROE
                         4 --> HYBRID ROE-HLL (CARBUNCLE FREE)

spatialorder= ORDER OF SPATIAL DISCRETISATION

        POSSIBLE VALUES= 1,2,3,..,7 --> SPATIAL ORDER OF ACCURACY

LIMITER= TYPE OF LIMITER FOR MUSCL-SCHEMES

USEFUL EVEN WHEN USING CENTRAL OR WENO LIMITERS, SINCE SOME CELLS MIGHT NOT HAVE SUFFICIENT NUMBER OF DIRECTIONAL STENCILS, OR DUE TO MOOD TECHNIQUE THEY MIGHT REVERT TO MUSCL METHOD

        POSSIBLE VALUES= 1 --> MINMOD (BARTH AND JESPERSEN EQUIVALENT LIMITER)
                         2 --> MOG    (MOG LIMITER)
                         3 --> MOGE
                         4 --> MOGV
                         5 --> VAN ALBADA
                         6 --> VAN LEER 
                         7 --> VENKATAKRISHNAN

POLY= BASIS FUNCTION POLYNOMIAL

        POSSIBLE VALUES= 1 --> GENERIC (DEFAULT x+y+z+x^2+y^2+z^2+xy+zy+xz)
                         2 --> LEGENDRE (SHIFTED FROM O TO 1)

wenocnschar= RECONSTRUCTION VARIABLES

        POSSIBLE VALUES= 1 --> CONSERVED (DEFAULT)
                         2 --> CHARACTERISTICS(WORKS ONLY FOR WENO TYPE OF SCHEMES)
                         3 --> PRIMITIVE (SUITABLE FOR MULTICOMPONENT FLOWS)

EES= DIRECTIONAL STENCILS ALGORITHMS

        POSSIBLE VALUES= 0 --> DEFAULT
                         1 --> RESTRICTIVE
                         2 --> SYMMETRICAL ONES
                         5 --> COMPACT WENO/WENOZ (YOU MUST USE THIS SETTING FOR 
                         ACTIVATING COMPACT WENO/WENOZ SCHEMES)

wenoz= WEIGHTS NORMALISATION

APPLICABLE TO WENO METHOD ONLY

        POSSIBLE VALUES= 0 --> DEFAULT (WHEN EES=5 IT ACTIVATES THE CWENO VARIANT)
                         1 --> CWENOZ WHEN EES=5

wenocentralweight= LINEAR WEIGHT FOR CENTRAL STENCIL

        POSSIBLE VALUES=  --> ANY VALUE 
                            (USE 10^3-10^6 FOR CWENO (higher values more suitable for smooth problems, 10^5 works across many problems))
                            (USE 2-100 FOR CWENOZ)
                            (USE 100-10^5 FOR WENO)

temporder= TEMPORAL DISCRETISATION METHOD

        POSSIBLE VALUES= 1 --> FORWARD EULER (CFL LIMIT <1.0)
                         2 --> 2ND-ORDER RUNGE-KUTTA (SSP) (CFL LIMIT <1.0)
                         3 --> 3RD-ORDER RUNGE-KUTTA (SSP) (CFL LIMIT <1.0)
                         4 --> 4TH-ORDER RUNGE-KUTTA (SSP) (CFL LIMIT <1.5)
                         5 --> FORWARD EULER WITH LOCAL TIME STEPPING FOR STEADY STATE PROBLEMS  (CFL LIMIT <1.0)
                         10 --> IMPLICIT BDF-EULER FOR STEADY STATE PROBLEMS (NO CFL LIMIT)
                         11 --> IMPLICIT DUAL TIME STEPPING SECOND ORDER FOR UNSTEADY PROBLEMS  (NO CFL LIMIT)
                         12 --> EXPLICIT DUAL TIME STEPPING SECOND ORDER FOR UNSTEADY PROBLEMS  (CFL LIMIT <1.0)

CFL= CFL NUMBER

        POSSIBLE VALUES= --> ANY VALUE (ACCORDING TO THE TEMPORAL DISCRETISATION METHOD)
                        FOR DUAL TIME STEPPING PROBLEMS THE CFL NUMBER CORRESPONDS ONLY TO THE
                        CFL NUMBER USED FOR THE PSEUDO STEADY-STATE PROBLEM AT EACH NEWTON ITERATION
                        (HENCE A LARGE VALUE SHOULD BE ASSIGNED FOR OPTION 10,11 TO ACCELERATE CONVERGENCE)
                         

timestep= EXPLICIT DEFINITION OF TIME STEP SIZE

        POSSIBLE VALUES= --> ANY VALUE
                         USED ONLY BY OPTION (11,12) DUAL TIME STEPPING FOR ADVANCING THE SOLUTION.

upperlimit

UPPER LIMIT OF ITERATIONS FOR PSEUDO-STEADY STATE PART OF DUAL-TIME STEPPING

        POSSIBLE VALUES= --> ANY VALUE (FOR OPTION 12 A VALUE OF 20 IS MORE THAN ENOUGH FOR 
                            CONVERGENCE TO THREE ORDERS OF MAGNITUDE REDUCTION IN RESIDUAL)
                            IF THIS NUMBER OF ITERATIONS IS NOT SUFFICIENT THE DUAL TIME WILL PROCEED TO THE
                            NEXT STEP

reSLIMIT

NORMALISED RESIDUAL CONVERGENCE CRITERION FOR STEADY STATE PROBLEMS (OR PSEUDO-STEADY STATE COMPONENT OF DTS)

        POSSIBLE VALUES= --> ANY VALUE (FOR OPTION 11, 12 A VALUE OF 0.001) IS MORE THAN ENOUGH FOR 
                            A WIDE RANGE OF PROBLEMS
                           FOR OPTION (5, 10) A VALUE CLOSE TO 0.00001 MIGHT BE REQUIRED

iboundary

PRESENCE OF PERIDIC BOUNDARY IN THE DOMAIN

       POSSIBLE VALUES= 1 --> PERIODIC
                        0 --> NON PERIODIC 

boundtype

        POSSIBLE VALUES= 0 --> SUPERSONIC
                         1 --> SUBSONIC (BY DEFAULT FARFIELD IS DETERMINED AUTOMATICALLY WITHIN THE CODE)

SCALER= SCALE THE MESH

      POSSIBLE VALUES= --> ANY VALUE (DIVIDES THE GRID COORDINATES BY THE SCALER VALUE)

GREENGO= GRADIENTS APPROXIMATION

        POSSIBLE VALUES= 0 --> LSQ (DEFAULT, EVERYTHING IS COMPUTED USING LSQ EXCEPT BAD QUALITY CELLS THAT USE GREEN GAUSS
                                    ONLY FOR THE APPROXIMATION OF THE GRADIENTS FOR THE DIFFUSION FLUXES)
                         1 --> GREEN GAUSS (GREEN GAUSS ONLY FOR THE APPROXIMATION OF THE GRADIENTS FOR THE DIFFUSION FLUXES)

LMACH= LOW MACH NUMBER CORRECTION

        POSSIBLE VALUES= 0 --> NO CORRECTION
                         1 --> LMACH CORRECTION (IMPROVES MAINLY THE LOW-ORDER MUSCL AND WENO SCHEMES UP TO 3RD-ORDER, ARTIFACTS
                         MAY APPEAR WHEN ENGAGED WITH HIGHER-ORDER METHODS)

OUT_TIME= TIME TO FINISH THE SIMULATION

        POSSIBLE VALUES= --> ANY VALUE

NTMAX= MAXIMUM NUMBER OF ITERATIONS TO FINISH THE SIMULATION

        POSSIBLE VALUES= --> ANY VALUE

WALLC= WALLCLOCK TIME LIMIT

A CHECKPOINT FILE AND OUTPUT FILE WILL BE WRITTEN WHEN THIS TIME IS MET

        POSSIBLE VALUES= --> ANY VALUE

TECPLOT= OUTPUT FILE FORMAT

        POSSIBLE VALUES= 1 --> TECPLOT BINARY (ONE FILE FOR THE ENTIRE DOMAIN)
                         2 --> VTK BINARY (ONE FILE FOR THE ENTIRE DOMAIN)
                         3 --> VTK BINARY PARTITIONED OUTPUT  
                         4 --> TECPLOT BINARY PARTITIONED OUTPUT

IEVERY

HOW OFTEN (WALLCLOCK TIME IN SECONDS) TO WRITE AN OUTPUT FILE

         POSSIBLE VALUES= --> ANY VALUE

IEVERY2

HOW OFTEN (WALLCLOCK TIME IN SECONDS) TO WRITE A RESTART/CHECKPOINT FILE

         POSSIBLE VALUES= --> ANY VALUE

IEVERYAV

HOW OFTEN (WALLCLOCK TIME IN SECONDS) TO WRITE AN AVERAGED OUTPUT FILE

         POSSIBLE VALUES= --> ANY VALUE

STENCIL_IO

ENABLE WRITING OF THE OUTPUT FILES FOR THE STENCILS FOR EACH OF THE PROBE LOCATIONS

        POSSIBLE VALUES= 1 --> ENABLED
                         0 --> DISABLED

Averaging= ENABLE AVERAGING WITHIN THE CODE

        POSSIBLE VALUES= 1 --> ACTIVATED (SHOULD ONLY BE USED FOR UNSTEADY ILES, DDES,DES,URANS SIMULATIONS)
                         0 --> DEACTIVATED (DEFAULT)

OUTSURF

ENABLE WRITING SURFACE OUTPUT SOLUTION FOR WALL BOUNDARIES

       POSSIBLE VALUES= 1 --> ACTIVE
                        0 --> DEACTIVATED

IFORCE= COMPUTE FORCES (CL,CD)

        POSSIBLE VALUES= 1 --> ACTIVE
                         0 --> DEACTIVATED

surfshear

ENABLE WRITING SHEAR STRESSES ON SURFACE OUTPUT SOLUTION FOR WALL BOUNDARIES

      POSSIBLE VALUES= 1 --> ACTIVE
                       0 --> DEACTIVATED

IRES_TURB= PREVIOUS SIMULATION TYPE (RESTART)

        POSSIBLE VALUES= 0 --> WITHOUT TURBULENCE MODEL
                         1 --> WITH TURBULENCE MODEL

IRES_UNSTEADY= PREVIOUS SIMULATION TYPE (RESTART)

        POSSIBLE VALUES= 0 --> STEADY
                         1 --> UNSTEADY

LAMPS= PREVIOUS PASSIVE SCALAR PRESENT IN RESTART FILE

        POSSIBLE VALUES= 0 --> NO PREVIOUS PASSIVE SCALAR
                         1 --> PREVIOUS PASSIVE SCALAR PRESENT IN RESTART FILE

Prev_turbmodel= PREVIOUS TURBULENCE MODEL USED

        POSSIBLE VALUES= 0 --> NO PREVIOUS TURBULENCE MODEL
                         1 --> SPALART-ALLMARAS 
                         2 --> K-OMEGA

NPROBES= NUMBER OF PROBES IN THE DOMAIN

        POSSIBLE VALUES= ANY VALUE --> ENSURE THAT YOU PROVIDE THEIR COORDINATES BELOW