-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexp_classification_mention.py
167 lines (125 loc) · 4.05 KB
/
exp_classification_mention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from models.unsup.generative import ConditionalInfiniteMixtureLSTMAutoregressive as GenModelUnsup
from models.unsup.recognition import GaussianBiLSTM as RecModelUnsup
from trainers.unsup import SGVB as TrainerUnsup
from models.sup.classification import Classification as Model
from trainers.sup import MaximumLikelihoodMentionLevel as Trainer
from run.sup import MaximumLikelihoodMentionLevel as Run
import os
import json
import sys
import numpy as np
import tensorflow as tf
out_dir = sys.argv[1]
trainer_unsup_pre_trained_dir = 'exp_outputs/unsup/'
pre_trained = False
pre_trained_dir = ''
unsup_data_dir = 'data/unsupervised/'
data_dir = 'data/supervised/mention_level/'
with open(os.path.join(unsup_data_dir, 'vocab.json'), 'r') as f:
vocab = json.loads(f.read())
with open(os.path.join(unsup_data_dir, 'entity_types.json'), 'r') as f:
entity_types = json.loads(f.read())
with open(os.path.join(data_dir, 'label_types.json'), 'r') as f:
label_types = json.loads(f.read())
num_data_train = 10
num_data_valid = 10
num_data_test = 10
n_classes = len(label_types)
neg_label = 'no_relation'
max_len = 140
emb_dim = 300
u_dim = 300
z_dim = 300
emb_matrix_entities = np.float32(np.random.normal(scale=0.1, size=(len(entity_types), emb_dim)))
emb_matrix_words = np.float32(np.random.normal(scale=0.1, size=(len(vocab), emb_dim)))
pad_ind = vocab.index('<PAD>')
optimiser_unsup = tf.keras.optimizers.Adam
optimiser_unsup_kwargs = {'learning_rate': 0.0001}
gen_nn_z_unsup_kwargs = {
'ff_depth': 2,
'ff_units': 1024,
'ff_activation': 'relu'
}
gen_nn_context_unsup_kwargs = {
'ff_depth': 2,
'ff_units': 1024,
'ff_activation': 'relu',
'lstm_depth': 1,
'lstm_units': 1024,
'token_drop': 0.5,
}
gen_model_unsup_kwargs = {
'max_len': max_len,
'emb_dim': emb_dim,
'u_dim': u_dim,
'z_dim': z_dim,
'nn_z_kwargs': gen_nn_z_unsup_kwargs,
'nn_context_kwargs': gen_nn_context_unsup_kwargs,
}
rec_nn_unsup_kwargs = {
'lstm_depth': 1,
'lstm_units': 1024,
'ff_depth': 2,
'ff_units': 1024,
'ff_activation': 'relu',
}
rec_model_unsup_kwargs = {
'max_len': max_len,
'emb_dim': emb_dim,
'u_dim': u_dim,
'nn_kwargs': rec_nn_unsup_kwargs,
}
trainer_unsup_kwargs = {
'strategy': None,
'optimiser': optimiser_unsup,
'optimiser_kwargs': optimiser_unsup_kwargs,
'emb_matrix_entities': emb_matrix_entities,
'emb_matrix_words': emb_matrix_words,
'pad_ind': pad_ind,
'gen_model': GenModelUnsup,
'gen_model_kwargs': gen_model_unsup_kwargs,
'rec_model': RecModelUnsup,
'rec_model_kwargs': rec_model_unsup_kwargs,
}
optimiser = tf.keras.optimizers.Adam
optimiser_kwargs = {'learning_rate': 0.0001}
model_nn_kwargs = {
'ff_depth': 1,
'ff_units': 300,
'ff_activation': 'relu',
}
model_kwargs = {
'z_dim': z_dim,
'n_classes': n_classes,
'nn_kwargs': model_nn_kwargs,
}
trainer_kwargs = {
'optimiser': optimiser,
'optimiser_kwargs': optimiser_kwargs,
'trainer_unsup': TrainerUnsup,
'trainer_unsup_kwargs': trainer_unsup_kwargs,
'trainer_unsup_pre_trained_dir': trainer_unsup_pre_trained_dir,
'model': Model,
'model_kwargs': model_kwargs,
'fine_tune_unsup': False,
}
train = True
n_iter_train = 100000
n_batch_train = 64
n_samples_train = 4
val_freq = 1000
n_batch_val = 32
n_samples_val = 8
test = True
n_batch_test = 32
n_samples_test = 8
if __name__ == '__main__':
run = Run(data_dir=data_dir, vocab=vocab, entity_types=entity_types, label_types=label_types, neg_label=neg_label,
num_data_train=num_data_train, num_data_valid=num_data_valid, num_data_test=num_data_test,
max_len=max_len, trainer=Trainer, trainer_kwargs=trainer_kwargs, out_dir=out_dir, pre_trained=pre_trained,
pre_trained_dir=pre_trained_dir)
if train:
run.train(n_iter=n_iter_train, n_batch=n_batch_train, n_samples=n_samples_train, val_freq=val_freq,
n_batch_val=n_batch_val, n_samples_val=n_samples_val)
if test:
run.test('test', n_batch=n_batch_test, n_samples=n_samples_test)