-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAN.py
85 lines (70 loc) · 2.96 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
'''
讓神經網路學習畫曲線
'''
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5 # GENERATE的靈感數量
ART_COMPONENT = 15 # 組成OUTPUT的要素數量
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENT) for _ in range(BATCH_SIZE)])
# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()
def artist_works():
'''
create BATCH_SIZE of curve lines to be the real art works
'''
a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
paintings = torch.from_numpy(paintings).float()
return Variable(paintings)
G = nn.Sequential(
nn.Linear(N_IDEAS, 128),
nn.ReLU(),
nn.Linear(128, ART_COMPONENT)
)
D = nn.Sequential(
nn.Linear(ART_COMPONENT, 128),
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid() # 為了要判斷是否像真的的概率
)
opt_G = torch.optim.Adam(G.parameters(), lr = LR_G)
opt_D = torch.optim.Adam(D.parameters(), lr = LR_D)
plt.ion() # 用來畫連續的圖片、影像
for epoch in range(1):
artist_paintings = artist_works()
G_ideas = Variable(torch.randn(BATCH_SIZE, N_IDEAS))
G_paintings = G(G_ideas)
# 判斷是否是真的圖的機率
prob_true_painting = D(artist_paintings)
prob_draw_painting = D(G_paintings)
# D_loss 要增加真實化的可能性,要降低畫出來的圖的可能性
# 因此如果prob_draw_painting越高的話,要讓Discriminator知道是假的 => 1 - prob可以越少
D_loss = - torch.mean(torch.log(prob_true_painting) + torch.log(1 - prob_draw_painting))
# G_loss 要讓畫出來的越像真的,所以要增加prob_draw_painting
G_loss = torch.mean(torch.log(1 - prob_draw_painting))
opt_D.zero_grad()
print(prob_draw_painting)
D_loss.backward(retain_graph = True)
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
# if step % 50 == 0: # plotting
# plt.cla()
# plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',)
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13})
# plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
# plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.01)
# plt.ioff()
# plt.show()