-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
255 lines (208 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import sys
import torch
import argparse
import datetime
import logging
import shutil
import importlib
import numpy as np
from tqdm import tqdm
import multiprocessing
from pathlib import Path
from torch.optim.lr_scheduler import CosineAnnealingLR
sys.path.append("..")
from data_utils.ModelNetDataLoader import ModelNetDataLoader
from data_utils import provider
BASE_DIR = os.path.dirname(os.path.abspath('__file__'))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'log'))
def test(model, loader, num_class=40):
mean_correct = []
class_acc = np.zeros((num_class,3))
for j, data in tqdm(enumerate(loader), total=len(loader)):
points, target = data
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = model.eval()
pred, _ = classifier(points.float())
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
cat = int(cat)
classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum()
class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0])
class_acc[cat,1]+=1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item()/float(points.size()[0]))
class_acc[:,2] = class_acc[:,0]/ class_acc[:,1]
class_acc = np.mean(class_acc[:,2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
def main(args):
def log_string(str):
logger.info(str)
print(str)
### Hyper Parameters ###
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
### Create Dir ###
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))+'-'+args.model+'-'+args.task
experiment_dir = Path('log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('classification')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
### Log ###
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
### Data Loading ###
log_string('Load dataset ...')
TRAIN_DATASET = ModelNetDataLoader(root=args.data_root,
tasks=args.train_tasks,
labels=args.train_labels,
partition='train',
npoint=args.num_point,
normal_channel=args.normal)
TEST_DATASET = ModelNetDataLoader(root=args.data_root,
tasks=args.test_tasks,
labels=args.test_labels,
partition='test',
npoint=args.num_point,
normal_channel=args.normal)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=0)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=0)
### Model Loading ###
num_class = 40
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(experiment_dir))
# pointnet_util pointnet_util,
shutil.copy('models/%s.py' % args.ults, str(experiment_dir))
classifier = MODEL.get_model(num_class,normal_channel=args.normal).cuda()
criterion = MODEL.get_loss().cuda()
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(classifier.parameters(),
lr=0.01,
momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step, gamma=args.lr_decay_rate)
global_epoch = 0
global_step = 0
best_instance_acc = 0.0
best_class_acc = 0.0
mean_correct = []
### Training ###
logger.info('Start training ...')
for epoch in range(start_epoch, args.epoch):
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9):
points, target = data
points = points.data.numpy()
points = torch.Tensor(points)
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
optimizer.zero_grad()
classifier = classifier.train()
pred, trans_feat = classifier(points)
loss = criterion(pred, target.long(), trans_feat)
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
loss.backward()
optimizer.step()
global_step += 1
train_instance_acc = np.mean(mean_correct)
log_string('Train Instance Accuracy: %f' % train_instance_acc)
if (epoch % 2 == 0) or (epoch == args.epoch):
with torch.no_grad():
instance_acc, class_acc = test(classifier.eval(), testDataLoader)
if (instance_acc >= best_instance_acc):
best_instance_acc = instance_acc
best_epoch = epoch + 1
if (class_acc >= best_class_acc):
best_class_acc = class_acc
log_string('Test Instance Accuracy: %f, Class Accuracy: %f'% (instance_acc, class_acc))
log_string('Best Instance Accuracy: %f, Class Accuracy: %f'% (best_instance_acc, best_class_acc))
if (instance_acc >= best_instance_acc):
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s'% savepath)
state = {
'epoch': best_epoch,
'instance_acc': instance_acc,
'class_acc': class_acc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
global_epoch += 1
# adjust lr
scheduler.step()
logger.info('End of training...')
def parseArgs():
""" Argument parser for configuring model training """
parser = argparse.ArgumentParser(description='RobustPointSet trainer')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--model', type=str, default='pointnet_cls', help='point cloud model')
parser.add_argument('--ults', type=str, default='pointnet_util', help='help functions for point cloud model')
parser.add_argument('--task', type=str, default='s1', help='Stragety 1 or 2')
parser.add_argument('--epoch', type=int, default=300, help='training epoch')
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--gpu', type=str, default='0', help='gpu device index')
parser.add_argument('--num_point', type=int, default=2048, help='number of points')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer')
parser.add_argument('--log_dir', type=str, default=None, help='directory to store training log')
parser.add_argument('--decay_rate', type=float, default=1e-4)
parser.add_argument('--lr_decay_rate', type=float, default=0.5)
parser.add_argument('--lr_decay_step', type=int, default=100)
parser.add_argument('--lr_clip', type=float, default=1e-7)
parser.add_argument('--normal', default=False, help='Whether to use normal information [default: False]')
parser.add_argument('--data_root', type=str, default='data/', help='data directory')
parser.add_argument('--train_tasks', type=str, nargs='+', required=True, help="List of RobustPointSet files to be trained on")
parser.add_argument('--test_tasks', type=str, nargs='+', required=True, help="List of RobustPointSet files to be tested on during training")
return parser.parse_args()
if __name__ == '__main__':
"""
Available data: original, jitter, translate, missing_part, sparse, rotation, occlusion
Example command for strategy 1:
python train.py --train_tasks train_original.npy --test_tasks test_original.npy
python train.py --train_tasks train_original.npy --test_tasks test_sparse.npy
Example command for strategy 2:
python train.py --train_tasks train_original.npy train_jitter.npy train_translate.npy train_missing_part.npy train_sparse.npy train_rotation.npy --test_tasks test_occlusion.npy
python train.py --train_tasks train_original.npy train_translate.npy train_missing_part.npy train_sparse.npy train_rotation.npy train_occlusion.npy --test_tasks test_jitter.npy
"""
args = parseArgs()
args.train_labels = ['train_labels.npy']*len(args.train_tasks)
args.test_labels =['test_labels.npy']*len(args.test_tasks)
main(args)