-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots_and_figures.py
381 lines (281 loc) · 15.2 KB
/
plots_and_figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import networkx as nx
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
import pickle
import pandas as pd
import scipy
from matplotlib.colors import LogNorm
import re
import numpy as np
sns.set_style("whitegrid")
# import the network pickles:
with open('network_pickles/network1', 'rb') as filehandle:
network1 = pickle.load(filehandle)
with open('network_pickles/network2', 'rb') as filehandle:
network2 = pickle.load(filehandle)
with open('network_pickles/networks4', 'rb') as filehandle:
network4 = pickle.load(filehandle)
# import measures of success
with open('measures', 'rb') as filehandle:
measures = pickle.load(filehandle)
# For the measures, first only count the flat number of all of them to get an int
#measures = dict(zip(measures.keys(), list(map(lambda x: len(x), measures.values()))))
# Only get fork or watch events
measures = dict(zip(measures.keys(), list(map(lambda x: len(list(filter(lambda y: re.search("Fork", y), x))),
measures.values()))))
# ------------ Network measures ---------------
def make_all_plots():
# Overall networks
def degree_dist(n):
# Color the repo points only based on measures of success (len of events)
# Need to color only half the nodes
# >>>>>>>>>>>>>>>>>>>>>> Take out nodes with degree = 1?
if n == network1:
d = dict(nx.degree(n))
dfdegree = pd.DataFrame(list(d.items()), columns=['user_node', 'Node Degree'])
dfdegree.sort_values('Node Degree', inplace=True, ascending=False)
dfdegree = dfdegree.reset_index(drop=True)
dfsuccess = pd.DataFrame(list(measures.items()), columns=['user_node', 'Repo Success'])
df_outer = pd.merge(dfdegree, dfsuccess, on='user_node', how='outer') # >>>>>>>>>>>>>>>>>>>>> about 100 nodes are missing, they don't get joined?
df_outer['Repo Success'] = df_outer['Repo Success'].fillna(value=-1000)
df_inner = pd.merge(dfdegree, dfsuccess, on='user_node', how='inner')
df_inner['Repo Success'] = df_inner['Repo Success']
stats = scipy.stats.spearmanr(df_inner['Node Degree'], df_inner['Repo Success'])
ax = sns.scatterplot(data=df_outer, x=df_outer.index, y='Node Degree', hue='Repo Success',
size='Repo Success', alpha=0.7, palette='Blues', hue_norm=LogNorm(),
size_norm=LogNorm(), sizes=(2, 100), linewidth=0)
ax.text(6400, 12, r'$\rho = $' + format(stats.correlation, '.4f') + ' (p = ' + format(stats.pvalue, '.2f') + ')',
horizontalalignment='left', size='medium', color='black', weight='regular')
ax.set_yscale('log')
ax.set(ylabel='log(Degree)')
ax.set(xlabel='Node # (rank order)')
plt.show()
else:
degree_sequence = sorted([d for n, d in n.degree()], reverse=True)
ax = sns.scatterplot(x=list(range(0, len(degree_sequence))), y=degree_sequence, linewidth=0,
alpha=0.5, palette='Blues')
ax.set_yscale('symlog')
ax.set(ylabel='log(Degree)')
ax.set(xlabel='User Node # (rank order)')
plt.show()
def centrality_dist(n):
if n == network1:
d = dict(nx.degree_centrality(n))
dfdegree = pd.DataFrame(list(d.items()), columns=['user_node', 'Node Centrality'])
dfdegree.sort_values('Node Centrality', inplace=True, ascending=False)
dfdegree = dfdegree.reset_index(drop=True)
dfsuccess = pd.DataFrame(list(measures.items()), columns=['user_node', 'Repo Success'])
df_outer = pd.merge(dfdegree, dfsuccess, on='user_node', how='outer') # >>>>>>>>>>>>>>>>>>>>> about 100 nodes are missing, they don't get joined?
df_outer['Repo Success'] = df_outer['Repo Success'].fillna(value=-1000)
df_inner = pd.merge(dfdegree, dfsuccess, on='user_node', how='inner')
df_inner['Repo Success'] = df_inner['Repo Success']
stats = scipy.stats.spearmanr(df_inner['Node Centrality'], df_inner['Repo Success'])
ax = sns.scatterplot(data=df_outer, x=df_outer.index, y='Node Centrality', hue='Repo Success',
size='Repo Success', alpha=0.7, palette='Blues', hue_norm=LogNorm(), size_norm=LogNorm())
ax.text(500, 0.004, r'$\rho = $' + format(stats.correlation, '.4f') + ' (p = ' + format(stats.pvalue, '.2f') + ')',
horizontalalignment='left', size='medium', color='black', weight='regular')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
ax.set(ylabel='log(Centrality)')
ax.set(xlabel='Node # (log rank order)')
plt.show()
else:
degree_sequence = sorted(list(nx.degree_centrality(n).values()), reverse=True)
ax = sns.scatterplot(x=list(range(0, len(degree_sequence))), y=degree_sequence, linewidth=0, alpha=0.5)
ax.set_yscale('symlog')
ax.set_xscale('symlog')
ax.set(ylabel='log(Centrality)')
ax.set(xlabel='User Node # (rank order)')
plt.show()
def evc_dist(n):
if n == network1:
d = dict(nx.eigenvector_centrality(n))
dfdegree = pd.DataFrame(list(d.items()), columns=['user_node', 'Eigenvector Centrality'])
dfdegree.sort_values('Eigenvector Centrality', inplace=True, ascending=False)
dfdegree = dfdegree.reset_index(drop=True)
dfsuccess = pd.DataFrame(list(measures.items()), columns=['user_node', 'Repo Success'])
df_outer = pd.merge(dfdegree, dfsuccess, on='user_node', how='outer') # >>>>>>>>>>>>>>>>>>>>> about 100 nodes are missing, they don't get joined?
df_outer['Repo Success'] = df_outer['Repo Success'].fillna(value=-1000)
df_inner = pd.merge(dfdegree, dfsuccess, on='user_node', how='inner')
df_inner['Repo Success'] = df_inner['Repo Success']
stats = scipy.stats.spearmanr(df_inner['Eigenvector Centrality'], df_inner['Repo Success'])
ax = sns.scatterplot(data=df_outer, x=df_outer.index, y='Eigenvector Centrality', hue='Repo Success',
size='Repo Success', alpha=0.7, palette='Blues', hue_norm=LogNorm(),
size_norm=LogNorm(), sizes=(2, 100), linewidth=0)
ax.text(100, 0.1, r'$\rho = $' + format(stats.correlation, '.4f') + ' (p = ' + format(stats.pvalue, '.2f') + ')',
horizontalalignment='left', size='medium', color='black', weight='regular')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
ax.set(ylabel='log(Eigenvector Centrality)')
ax.set(xlabel='Node # (rank order)')
plt.show()
else:
degree_sequence = sorted(list(nx.eigenvector_centrality(n).values()), reverse=True)
ax = sns.scatterplot(x=list(range(0, len(degree_sequence))), y=degree_sequence, linewidth=0,
alpha=0.5, palette='Blues')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
ax.set(ylabel='log(Eigenvector Centrality)')
ax.set(xlabel='User Node # (rank order)')
plt.show()
degree_dist(network1)
degree_dist(network2)
centrality_dist(network1)
centrality_dist(network2)
evc_dist(network1)
evc_dist(network2)
# Repo-specific networks
# Gotta make a DF for all of this for sns to work nicely
# header: repo, node number, degree, centrality, evc
def make_df(ns):
dataframedegree = pd.DataFrame()
dataframcentrality = pd.DataFrame()
dataframepagerank = pd.DataFrame()
for network in ns:
repo = network.name
pr = nx.pagerank(network)
dc = nx.degree_centrality(network)
d = dict(nx.degree(network))
dfdegree = pd.DataFrame(list(d.items()), columns=['user_node', 'degree'])
dfdegree.sort_values('degree', inplace=True, ascending=False)
dfdegree = dfdegree.reset_index(drop=True)
dfcentrality = pd.DataFrame(list(dc.items()), columns=['user_node', 'centrality'])
dfcentrality.sort_values('centrality', inplace=True, ascending=False)
dfcentrality = dfcentrality.reset_index(drop=True)
dfpagerank = pd.DataFrame(list(pr.items()), columns=['user_node', 'pagerank'])
dfpagerank.sort_values('pagerank', inplace=True, ascending=False)
dfpagerank = dfpagerank.reset_index(drop=True)
dfdegree['repo'] = repo
dfdegree['success'] = measures.get(repo)
dfcentrality['repo'] = repo
dfcentrality['success'] = measures.get(repo)
dfpagerank['repo'] = repo
dfpagerank['success'] = measures.get(repo)
dataframedegree = pd.concat([dataframedegree, dfdegree])
dataframcentrality = pd.concat([dataframcentrality, dfcentrality])
dataframepagerank = pd.concat([dataframepagerank, dfpagerank])
return dataframedegree, dataframcentrality, dataframepagerank
def degree_dists(df):
ax = sns.lineplot(data=df.reset_index(), x='index', y='degree', hue='repo', palette="Blues", legend=False, size=0.5)
entropies = []
successes = []
for graph in network4:
s = measures.get(graph.name)
if not s: continue
successes.append(measures.get(graph.name))
degrees = sorted(list(dict(nx.degree(graph)).values()), reverse=True)
entropy = scipy.stats.entropy(degrees)
entropies.append(entropy)
result = scipy.stats.spearmanr(successes, entropies)
ax.text(10, 10, r'$\rho = $' + format(result.correlation, '.4f') + ' (p = ' + format(result.pvalue, '.2f') + ')',
horizontalalignment='left', size='medium', color='black', weight='regular')
ax.set_yscale('log')
ax.set_xscale('log')
ax.set(ylabel='log(Degree)')
ax.set(xlabel='Node # (log rank order)')
plt.show()
def centrality_dists(df):
ax = sns.lineplot(data=df.reset_index(), x='index', y='centrality', hue='repo', palette="Blues", legend=False, size=0.5)
ax.set_yscale('log')
ax.set_xscale('log')
ax.set(ylabel='log(Centrality)')
ax.set(xlabel='Node # (log rank order)')
plt.show()
def pagerank_dists(df):
ax = sns.lineplot(data=df.reset_index(), x='index', y='pagerank', hue='repo', palette="Blues", legend=False, size=0.5)
ax.set_yscale('log')
ax.set_xscale('log')
ax.set(ylabel='log(Pagerank)')
ax.set(xlabel='Node # (log rank order)')
plt.show()
dataframedegree, dataframcentrality, dataframepagerank = make_df(network4)
degree_dists(dataframedegree)
centrality_dists(dataframcentrality)
pagerank_dists(dataframepagerank)
# ------------ Network viz ---------------
def viz_networks():
# ------ networks 1 and 2 -------------
def whole_network(G, measures, title):
# Pick a component instead of whole network
#G = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[1]).copy()
# Only get biggest nodes for a particular measure
# measures = dict((k, v) for k, v in measures.items() if v >= 0.08)
# G = G.subgraph(list(measures.keys())).copy()
pos = nx.spring_layout(G)
# Can take some time to calculate, so use a pickle for faster results on multiple iterations
# pos = pickle.load(open("posnetworks1", "rb"))
# with open('posnetworks1', 'wb') as outfile:
# pickle.dump(pos, outfile)
# outfile.close()
nodes = nx.draw_networkx_nodes(G, pos, node_size=4, cmap=plt.cm.cividis,
node_color=list(measures.values()),
nodelist=list(measures.keys()))
nodes.set_norm(mcolors.SymLogNorm(linthresh=0.01, linscale=1))
# labels = nx.draw_networkx_labels(G, pos)
nx.draw_networkx_edges(G, pos)
plt.colorbar(nodes)
plt.title(title)
plt.axis('off')
plt.show()
G = network2
# most popular repos
# collections.Counter(list(nx.get_edge_attributes(G, 'type').values()))
# Color by some measure
#measures = nx.degree_centrality(G)
title = 'User Interactions via Shared Repos\nDegree Centrality'
#whole_network(G, measures, title)
def bipartite_network(G, title):
# Pick a component instead of whole network
# G = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[1]).copy()
pos = nx.spring_layout(G)
# Can take some time to calculate, so use a pickle for faster results on multiple iterations
# pos = pickle.load(open("posnetworks1", "rb"))
# with open('posnetworks1', 'wb') as outfile:
# pickle.dump(pos, outfile)
# outfile.close()
repo_nodes = list(filter(lambda x: x[1]['bipartite'] == 1, list(G.nodes(data=True))))
repo_nodes = list(map(lambda x: x[0], repo_nodes))
user_nodes = list(filter(lambda x: x[1]['bipartite'] == 0, list(G.nodes(data=True))))
user_nodes = list(map(lambda x: x[0], user_nodes))
nx.draw_networkx_nodes(G, pos, nodelist=repo_nodes, node_color='#fcb800', node_size=4, alpha=0.8)
nx.draw_networkx_nodes(G, pos, nodelist=user_nodes, node_color='#66a1ff', node_size=4, alpha=0.8)
nx.draw_networkx_edges(G, pos, width=0.5, alpha=0.2)
plt.title(title)
plt.axis('off')
plt.show()
G = network1
title = 'User & Repos via Push/Pull Events'
#bipartite_network(G, title)
def smallworld(G):
numnodes = G.number_of_nodes()
numedges = G.number_of_edges()
nodedegree = (numedges * 2.0) / numnodes
c_sm = nx.average_clustering(G) # c^ws in H&G (2006)
# c_sm=sum(nx.triangles(usfg).values())/(# of paths of length 2) # c^tri
l_sm = nx.average_shortest_path_length(G)
# c_rand same as edge density for a random graph? not sure if "-1" belongs in denominator, double check
# c_rand= (numedges*2.0)/(numnodes*(numnodes-1)) # c^ws_rand?
c_rand = float(nodedegree) / numnodes # c^tri_rand?
l_rand = np.log(numnodes) / np.log(nodedegree) # approximation, see humphries & gurney (2008) eq 11
# l_rand= (np.log(numnodes)-0.5772)/(np.log(nodedegree)) + .5 # alternative ASPL from fronczak, fronczak & holyst (2004)
s = (c_sm / c_rand) / (l_sm / l_rand)
return s
def hub_spokes_network4(G):
# Small world network vs scale free network
# Small world: sigma and omega
# Scale free:
successes = []
sms = []
for graph in G:
s = measures.get(graph.name)
if not s: continue
if not nx.is_connected(graph): continue
successes.append(measures.get(graph.name))
sms.append(smallworld(graph))
print(G.index(graph))
result = scipy.stats.spearmanr(successes, sms)
print(result)
hub_spokes_network4(network4)
#make_all_plots()
viz_networks()