-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
272 lines (238 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import argparse, os, utils
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import matplotlib.pyplot as plt
from torch.utils import data
from glob import glob
from model import FMnet, UNet
from NestedUNet import NestedUNet
from torchvision.models.segmentation import deeplabv3_resnet50, deeplabv3_resnet101, deeplabv3_mobilenet_v3_large
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Training settings ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
parser = argparse.ArgumentParser(description='PyTorch DLCV')
parser.add_argument('--batch-size', type=int, default=8, metavar='N',
help='input batch size for training (default: 8)')
parser.add_argument('--epochs', type=int, default=150, metavar='N',
help='number of epochs to train (default: 150)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--weight-decay', type=float, default=0.00, metavar='WD',
help='weight decay (default: 0.0)')
parser.add_argument('--seed', type=int, default=0, metavar='S',
help='random seed (default: 0)')
parser.add_argument('--verbose', type=bool, default=True, metavar='V',
help='verbose (default: True)')
parser.add_argument(('--output-dir'), type=str, default='output', metavar='OP',
help='Output directory (default: output)')
parser.add_argument('--view', type=str, default='bottom', metavar='V',
help='Camera view (default: bottom)')
parser.add_argument('--model-name', type=str, default='FMnet', metavar='MN',
help='Which model to use, options include [FMnet, UNet, UNet++, DeepLabv3_ResNet50, DeepLabv3_ResNet101, and DeepLabv3_MobileNet] (Default: FMnet)')
parser.add_argument('--model-weights', type=str, default=None, metavar='MW',
help='Model weights to be used if resuming training (default: None)')
args = parser.parse_args()
torch.manual_seed(args.seed)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Setup ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if torch.cuda.is_available():
use_gpu = True
print("GPU available and will be used for training")
else:
use_gpu = False
print("GPU not available, using CPU instead")
# Create output directory if it does not exist
output_path = os.path.join(os.getcwd(), args.output_dir, args.model_name)
if not os.path.exists(output_path):
os.makedirs(output_path)
# Create trained models directory if it does not exist
trained_models_path = os.path.join(output_path, 'trained_models')
if not os.path.exists(trained_models_path):
os.makedirs(trained_models_path)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Data loaders ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
try:
train_dataset_files = glob(os.path.join(os.getcwd(), 'data', args.view, 'train', '*'))
except Exception as e:
raise Exception("Dataset view name not recognized: {}".format(args.view))
# Load data
print("Loading data...")
train_dataset = utils.get_dataset(train_dataset_files, args.view, train=True)
print("Done loading data")
# Divide data into training and validation set
train_ratio = 0.9
n_train_examples = int(len(train_dataset) * train_ratio)
n_val_examples = len(train_dataset) - n_train_examples
train_data, val_data = data.random_split(train_dataset, [n_train_examples, n_val_examples])
if args.verbose:
print(f"Number of training samples = {len(train_data)}")
print(f"Number of validation samples = {len(val_data)}")
# Create data loader for training and validation
train_loader = data.DataLoader(train_data, shuffle=True, batch_size=args.batch_size, num_workers=16)
val_loader = data.DataLoader(val_data, shuffle=False, batch_size=args.batch_size, num_workers=16)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Model settings ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print(f"Using model: {args.model_name}")
if args.model_name == 'FMnet':
model = FMnet()
elif args.model_name == 'UNet':
model = UNet()
elif args.model_name == 'UNet++':
model = NestedUNet(num_classes=3, input_channels=1)
elif args.model_name == 'DeepLabv3_ResNet50':
model = deeplabv3_resnet50(weights=None, weights_backbone=None, num_classes=3)
elif args.model_name == 'DeepLabv3_ResNet101':
model = deeplabv3_resnet101(weights=None, weights_backbone=None, num_classes=3)
elif args.model_name == 'DeepLabv3_MobileNet':
model = deeplabv3_mobilenet_v3_large(weights=None, weights_backbone=None, num_classes=3)
else:
raise Exception("Model name not recognized: {}".format(args.model_name))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device);
if args.model_weights is not None:
print("Loading model weights from {}".format(args.model_weights))
model.load_state_dict(torch.load(args.model_weights))
# Set optimizer and learning rate scheduler
learning_rate = args.lr
change_lr_every = 30
change_lr_epoch = 60
if args.epochs > change_lr_epoch:
LR = np.ones(change_lr_epoch)*learning_rate
for i in range(int(np.ceil((args.epochs-change_lr_epoch)/change_lr_every))):
LR = np.append(LR, LR[-1]/2 * np.ones(change_lr_every))
else:
LR = np.ones(args.epochs)*learning_rate
LR[-6:-3] = LR[-1]/10
LR[-3:] = LR[-1]/25
# Plot the learning rate schedule
fig, ax = plt.subplots(1, 1, figsize=(5, 5), dpi=100)
ax.plot(LR)
ax.set_xlabel('Epochs')
ax.set_ylabel('Learning Rate')
ax.set_title('Learning Rate Scheduler')
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
fig.savefig(os.path.join(output_path, 'LR_scheduler.png'))
optimizer = optim.Adam(model.parameters(), lr=LR[0], weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=5, factor=0.5, verbose=True)
# Loss functions
loss_fn = nn.BCEWithLogitsLoss()
dist_loss = nn.MSELoss()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Training ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def train():
model.train()
train_loss = 0
train_acc = []
n_batches = 0
for train_batch in tqdm(train_loader, desc="Train Loop"):
images = train_batch["image"].to(device, dtype=torch.float32)
mask = train_batch["mask"].to(device, dtype=torch.float32)
mask_edges = train_batch["mask_edges"].to(device, dtype=torch.float32)
if args.model_name in ['FMnet', 'UNet']:
mask_pred, mask_edges_pred, _ = model(images)
else:
if "DeepLabv3" in args.model_name:
out = model(images.repeat(1, 3, 1, 1))['out']
else:
out = model(images)
mask_pred, mask_edges_pred, _ = torch.unsqueeze(out[:, 0, :, :], 1), torch.unsqueeze(out[:, 1, :, :], 1), torch.unsqueeze(out[:, 2, :, :], 1)
# Compute loss
loss = loss_fn(mask_pred, mask) + 0.5*loss_fn(mask_edges_pred, mask_edges) #+ 0.1*dist_loss(mask_dist_to_boundary_pred*mask, mask_dist_to_boundary*mask)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
mask_pred[mask_pred > 0.5] = 1
mask_pred[mask_pred <= 0.5] = 0
train_acc.append(utils.iou(mask_pred.detach().cpu().numpy(), mask.cpu().numpy()).item())
n_batches += 1
train_loss /= n_batches
train_acc = np.nanmean(train_acc)
return train_loss, train_acc
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Validation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def validation():
model.eval()
validation_loss = 0
n_batches = 0
validation_acc = []
for val_batch in tqdm(val_loader, desc="Validation Loop"):
images = val_batch["image"].to(device, dtype=torch.float32)
mask = val_batch["mask"].to(device, dtype=torch.float32)
mask_edges = val_batch["mask_edges"].to(device, dtype=torch.float32)
if args.model_name in ['FMnet', 'UNet']:
mask_pred, mask_edges_pred, _ = model(images)
else:
if "DeepLabv3" in args.model_name:
out = model(images.repeat(1, 3, 1, 1))['out']
else:
out = model(images)
mask_pred, mask_edges_pred, _ = torch.unsqueeze(out[:, 0, :, :], 1), torch.unsqueeze(out[:, 1, :, :], 1), torch.unsqueeze(out[:, 2, :, :], 1)
# Compute loss and accuracy
loss = loss_fn(mask_pred, mask) + 0.5*loss_fn(mask_edges_pred, mask_edges) #+ 0.1*dist_loss(mask_dist_to_boundary_pred*mask, mask_dist_to_boundary*mask)
validation_loss += loss.item()
mask_pred[mask_pred > 0.5] = 1
mask_pred[mask_pred <= 0.5] = 0
validation_acc.append(utils.iou(mask_pred.detach().cpu().numpy(), mask.cpu().numpy()).item())
n_batches += 1
validation_loss /= n_batches
scheduler.step(np.around(validation_loss,2))
validation_acc = np.nanmean(validation_acc)
return validation_loss, validation_acc
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Training ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
epoch_train_loss, epoch_train_acc = [], []
epoch_val_loss, epoch_val_acc = [], []
if args.verbose:
print("Training started...")
best_val_loss = float('inf')
early_stopping_counter = 0
pbar = tqdm(range(args.epochs), disable=not(args.verbose), desc="Epoch Loop")
for epoch in pbar:
if early_stopping_counter >= 30:
break
utils.set_seed(epoch)
avg_train_loss, avg_train_acc = train()
avg_val_loss, avg_val_acc = validation()
epoch_train_loss.append(avg_train_loss)
epoch_train_acc.append(avg_train_acc)
epoch_val_loss.append(avg_val_loss)
epoch_val_acc.append(avg_val_acc)
model_file = os.path.join(trained_models_path, 'model_best.pth')
if avg_val_loss < best_val_loss:
torch.save(model.state_dict(), model_file)
# save optimizer
torch.save(optimizer.state_dict(), os.path.join(trained_models_path, 'optimizer_best.pth'))
best_val_loss = avg_val_loss
early_stopping_counter = 0
else:
early_stopping_counter += 1
pbar.set_postfix({'val_loss': avg_val_loss, 'best_val_loss': best_val_loss, 'early_stopping_counter': early_stopping_counter})
if args.verbose:
print("Training completed!")
print("Model saved to {}".format(model_file))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Plot results ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Plot training and validation loss
fig, ax = plt.subplots(1, 2, figsize=(12, 4), dpi=100)
ax[0].plot(epoch_train_loss, label='train', lw=2)
ax[0].plot(epoch_val_loss, label='val', lw=2)
ax[0].set_title('Loss')
ax[0].set_xlabel('Epoch')
ax[0].set_ylabel('Loss')
ax[0].legend()
#ax[0].set_ylim([0, 0.1])
# remove right and top spines
ax[0].spines['right'].set_visible(False)
ax[0].spines['top'].set_visible(False)
ax[1].plot(epoch_train_acc, label='train', lw=2)
ax[1].plot(epoch_val_acc, label='val', lw=2)
ax[1].set_title('Accuracy')
ax[1].set_xlabel('Epoch')
ax[1].set_ylabel('Accuracy (%) - IoU')
ax[1].legend()
# remove right and top spines
ax[1].spines['right'].set_visible(False)
ax[1].spines['top'].set_visible(False)
#ax[1].set_ylim([95, 100])
# Save figure
fig.savefig(os.path.join(output_path, 'loss_acc.png'))
if args.verbose:
print("Loss and accuracy plots saved to {}".format(os.path.join(output_path, 'loss_acc.png')))