-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
352 lines (255 loc) · 9.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import cv2
import dlib
from datetime import datetime
from time import time, sleep
from scipy.spatial import distance
from logging import *
import numpy as np
text_log(message='Imported libraries successfully.',
show_console=True)
# Global Constants
DEBUG_FACE = False
DEBUG_LANDMARKS = True
DEBUG_BLINK = True
CLEAR_OLD_LOGS = False
DETECTOR = dlib.get_frontal_face_detector()
PREDICTOR = dlib.shape_predictor("data/shape_predictor_68_face_landmarks.dat")
HAAR_DATA = cv2.CascadeClassifier('data/frontfacedata.xml')
FONT = cv2.FONT_HERSHEY_SIMPLEX
try:
text_log(message='Opening camera')
VID = cv2.VideoCapture(0)
except KeyboardInterrupt:
exit('Quitting')
except Exception as e:
text_log(message='Error while reading camera, quitting',
show_console=True)
exit('Quitting')
if CLEAR_OLD_LOGS:
clear_logs()
text_log(message='Global variables set.')
def find_face() -> list:
try:
ret, frame = VID.read()
if ret:
grayscale = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_coordinates = HAAR_DATA.detectMultiScale(grayscale)
if len(face_coordinates) == 1:
x, y, w, h = [each for each in face_coordinates[0]]
# return [x, y, x + w, y + h] # Face Mask
subframe = grayscale[y: y + h, x: x + w]
else:
x, y = 0, 0
w = grayscale.shape[1]
h = grayscale.shape[0]
subframe = grayscale
if DEBUG_FACE:
try:
print(len(face_coordinates), face_coordinates)
# print(f'X {x} Y {y}, W {w}, H {h}')
cv2.imshow('Raw Input', frame)
cv2.rectangle(img=grayscale,
pt1=(x, y),
pt2=(x+h, y+w),
thickness=2,
color=(255, 255, 255))
cv2.imshow('Grayscale', grayscale)
cv2.imshow('Extracted Face', subframe)
cv2.waitKey(1)
# print(face_coordinates)
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(message=f'Failed to debug face - {e}',
show_console=True)
return [frame, subframe, [x, y, w, h]]
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(message=f'Could not find video - {e}',
show_console=True)
def calculate_EAR(eye) -> float:
try:
A = distance.euclidean(eye[1], eye[5])
B = distance.euclidean(eye[2], eye[4])
C = distance.euclidean(eye[0], eye[3])
ear_aspect_ratio = (A + B) / (2.0 * C)
return ear_aspect_ratio
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(message=f'Failed to calculate EAR {e}')
def check_blink(grey_frame) -> bool:
try:
blink = False
faces = DETECTOR(grey_frame)
for face in faces:
face_landmarks = PREDICTOR(grey_frame, face)
leftEye = []
rightEye = []
for n in range(36, 42):
x = face_landmarks.part(n).x
y = face_landmarks.part(n).y
leftEye.append((x, y))
next_point = n + 1
if n == 41:
next_point = 36
x2 = face_landmarks.part(next_point).x
y2 = face_landmarks.part(next_point).y
if DEBUG_BLINK:
cv2.line(grey_frame, (x, y), (x2, y2), (150, 150, 0), 2)
for n in range(42, 48):
x = face_landmarks.part(n).x
y = face_landmarks.part(n).y
rightEye.append((x, y))
next_point = n + 1
if n == 47:
next_point = 42
x2 = face_landmarks.part(next_point).x
y2 = face_landmarks.part(next_point).y
if DEBUG_BLINK:
cv2.line(grey_frame, (x, y), (x2, y2), (150, 150, 0), 2)
try:
if DEBUG_BLINK:
cv2.imshow('Eyes', grey_frame)
cv2.waitKey(1)
left_ear = calculate_EAR(leftEye)
right_ear = calculate_EAR(rightEye)
EAR = (left_ear + right_ear) / 2
EAR = round(EAR, 2)
if EAR < 0.18:
blink = True
text_log(message='Blink Detected')
sleep(0.05)
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(message=f'Failed to debug blink {e}',
show_console=True)
return blink
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(message=f'Failed to check blinks {e}',
show_console=True)
def check_yawn():
pass
def calibrate(duration: float) -> list:
ret, frame = VID.read()
if ret:
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = DETECTOR(grey)
# frame = cv2.resize(frame, dsize=(frame.shape[1] * 2, frame.shape[0] * 2))
lt_eye = []
rt_eye = []
start = time()
while True:
for face in faces:
landmarks = PREDICTOR(grey, face)
points = []
for n in range(0, 68):
x = landmarks.part(n).x
y = landmarks.part(n).y
# Appending Y coordinates only since we need vertical euclidean distance between eyelids/lips
points.append(y)
# print(points)
if ((n > 35) and (n < 48)) or ((n > 47) and (n < 68)):
if DEBUG_LANDMARKS:
cv2.circle(frame,
center=(x, y),
radius=2,
color=(0, 0, 0),
thickness=-1)
add_text(winname=frame,
location=(x, y),
message=str(n),
colour=(255, 255, 255),
size=0.25
)
add_text(winname=frame,
message='Calibrating system, please relax your face to a normal position',
thick=2,
size=0.5,
colour=(25, 25, 25)
)
lt_avg = ((points[41] - points[37]) + (points[40] - points[38]))/2
rt_avg = ((points[47] - points[43]) + (points[48] - points[44]))/2
lt_eye.append(lt_avg)
rt_eye.append(rt_avg)
cv2.imshow("Facial Landmarks", frame)
cv2.waitKey(1)
if time()-start <= duration:
break
break
# print(lt_eye, rt_eye)
cv2.destroyAllWindows()
# Return average eyelid separation for both eyes
return [sum(lt_eye)/len(lt_eye), sum(rt_eye)/len(rt_eye)]
def exit_sequence() -> None:
cv2.destroyAllWindows()
del DETECTOR, PREDICTOR, HAAR_DATA, DEBUG_FACE, DEBUG_LANDMARKS, DEBUG_BLINK, CLEAR_OLD_LOGS
text_log(message='Quit',
curr_time=datetime.now().strftime("%H:%M:%S"))
quit('Quitting')
def add_text(winname, message, location=(35, 35), colour=(255, 255, 255), thick=1, size=1.0) -> None:
try:
cv2.putText(img=winname,
text=message,
org=location,
color=colour,
fontScale=size,
fontFace=FONT,
thickness=thick)
except KeyboardInterrupt:
exit_sequence()
except Exception as e:
text_log(f'Failed to add text {message} on {winname}. Exception - {e}',
curr_time=datetime.now().strftime("%H:%M:%S"),
show_console=True)
text_log(message='All functions initialized, starting...',
show_console=True)
blinks = 0
new_blinks = 0
drowsy = False
init = time()
while True:
face_data = find_face()
if check_blink(face_data[1]) == True:
blinks += 1
new_blinks += 1
if time() - init < 5 and new_blinks > 10:
drowsy = True
new_blinks = 0
init = time()
if time() - init >= 5:
init = time()
frame = face_data[0]
x, y, w, h = (i for i in face_data[2])
add_text(winname=frame,
message=f'Blinks {blinks}',
location=(20, 25),
size=0.75,
thick=2,
colour=(0, 0, 0))
if drowsy:
text_log(message='Drowsy')
add_text(winname=frame,
message=f'Drowsy {drowsy}',
location=(20, 50),
size=0.75,
thick=2,
colour=(0, 0, 200))
else:
add_text(winname=frame,
message=f'Drowsy {drowsy}',
location=(20, 50),
size=0.75,
thick=2,
colour=(0, 255, 0))
cv2.rectangle(img=frame,
pt1=(x, y),
pt2=(x + h, y + w),
thickness=2,
color=(255, 255, 255))
cv2.imshow('Output', frame)
cv2.waitKey(1)