-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcelsius_fahrenheit.py
33 lines (26 loc) · 1.15 KB
/
celsius_fahrenheit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from __future__ import absolute_import, division, print_function
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import numpy as np
celsius_q = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float)
fahrenheit_a = np.array([-40, 14, 32, 46, 59, 72, 100], dtype=float)
for i,c in enumerate(celsius_q):
print("{} degrees Celsius = {} degrees Fahrenheit".format(c, fahrenheit_a[i]))
l0 = tf.keras.layers.Dense(units=1, input_shape=[1])
l1 = tf.keras.layers.Dense(units=4)
l2 = tf.keras.layers.Dense(units=1)
model = tf.keras.Sequential([l0, l1, l2])
model.compile(loss='mean_squared_error',
optimizer=tf.keras.optimizers.Adam(0.1))
print("Started layer variables: {}".format(l0.get_weights()))
history = model.fit(celsius_q, fahrenheit_a, epochs=500, verbose=False)
print("Finish training the model")
import matplotlib.pyplot as plt
plt.xlabel('Epoch Number')
plt.ylabel("Loss Magnitude")
plt.plot(history.history['loss'])
plt.show()
print(model.predict([100.0]))
print("These are the l0 variables: {}".format(l0.get_weights()))
print("These are the l1 variables: {}".format(l1.get_weights()))
print("These are the l2 variables: {}".format(l2.get_weights()))