-
Notifications
You must be signed in to change notification settings - Fork 10
/
trainer.py
186 lines (151 loc) · 6.76 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Tranier."""
__author__ = 'Chong Guo <[email protected]>'
__copyright__ = 'Copyright 2018, Chong Guo'
__license__ = 'MIT'
import os
import math
import argparse
import numpy as np
import os.path as osp
import json
import torch
import torch.nn as nn
import torch.cuda as cuda
from torch.autograd import Variable
from utils.logger import Logger
class Trainer():
def __init__(self, net, train_loader, test_loader, optimizer, start_epoch=0,
best_accuracy=0, best_epoch=0, base_lr=0.1, criterion=nn.CrossEntropyLoss(),
lr_decay_interval=50, use_cuda=True, save_dir='checkpoint'):
self.net = net
self.train_loader = train_loader
self.test_loader = test_loader
self.optimizer = optimizer
self.base_lr = base_lr
self.criterion = criterion
self.lr_decay_interval = lr_decay_interval
self.use_cuda = use_cuda
self.best_accuracy = best_accuracy
self.best_epoch = best_epoch
self.start_epoch = start_epoch
self.save_dir = save_dir
self.tflog_writer = None
try:
from tools.logger import Logger
except ImportError as e:
print("fail to import tensorboard: {} ".format(e))
else:
self.tflog_writer = Logger(self.save_dir, restart=True)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
self.jsonlog_writer_train = open(osp.join(self.save_dir, "train.log"), 'w+')
self.jsonlog_writer_test = open(osp.join(self.save_dir, "test.log"), 'w+')
def __del__(self):
self.jsonlog_writer_train.close()
self.jsonlog_writer_test.close()
def train(self, epoch):
""" Traning epoch """
print('==> Training Epoch: %d' % epoch)
self.net.train()
total_train_loss = 0
total_correct = 0
total_size = 0
n_train = len(self.train_loader.dataset)
for batch_idx, (inputs, targets) in enumerate(self.train_loader):
if self.use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
self.optimizer.zero_grad()
outputs = self.net(inputs)
loss = self.criterion(outputs, targets)
loss.backward()
self.optimizer.step()
total_train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
batch_correct = predicted.eq(targets.data).cpu().sum()
total_correct += batch_correct
error_rate = 100. * (1 - batch_correct / len(inputs))
total_size += targets.size(0)
partial_epoch = epoch + batch_idx / len(self.train_loader)
print('Epoch: [{}]\tTrain:[{}/{} ({:.0f}%)]\tLoss: {:.6f}\tError: {:.6f}'.format(
epoch, total_size, n_train, 100. * batch_idx / len(self.train_loader),
loss.data[0], error_rate))
info = {
'epoch': partial_epoch,
'train-loss': loss.data[0],
'train-top1-error': error_rate
}
self.jsonlog_writer_train.write(json.dumps(info) + "\n")
if self.tflog_writer is not None:
info.pop('epoch', None)
for tag, value in info.items():
self.tflog_writer.scalar_summary(tag, value, partial_epoch)
print('Epoch: [{}]\tTotal training loss: [{:.6f}]\tTotal training error rate: [{:.6f}]'.format(
epoch, total_train_loss, (total_size - total_correct) / total_size * 100))
def test(self, epoch):
""" Testing epoch """
print('==> Testing Epoch: %d' % epoch)
self.net.eval()
total_test_loss = 0
total_correct = 0
total_size = 0
n_train = len(self.test_loader.dataset)
for batch_idx, (inputs, targets) in enumerate(self.test_loader):
if self.use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = self.net(inputs)
loss = self.criterion(outputs, targets)
total_test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
batch_correct = predicted.eq(targets.data).cpu().sum()
total_correct += batch_correct
total_size += targets.size(0)
error_rate = 100. * (1 - batch_correct / len(inputs))
partial_epoch = epoch + batch_idx / len(self.train_loader)
print('Epoch: [{}]\tTest: [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tError: {:.6f}'.format(
epoch, total_size, n_train, 100. * batch_idx / len(self.train_loader),
loss.data[0], error_rate))
print('Epoch: [{}]\tTotal testing loss: [{:.6f}]\tTotal testing error rate: [{:.6f}]'.format(
epoch, total_test_loss, (total_size - total_correct) / total_size * 100))
accuracy = total_correct / total_size * 100
loss = total_test_loss / total_size
# writing logs into files
info = {
'epoch': epoch,
'test-loss': loss,
'test-top1-error': 100 - accuracy
}
self.jsonlog_writer_test.write(json.dumps(info) + "\n")
if self.tflog_writer is not None:
info.pop('epoch', None)
for tag, value in info.items():
self.tflog_writer.scalar_summary(tag, value, partial_epoch)
return accuracy, loss
def adjust_learning_rate(self, epoch):
""" Sets the learning rate to the initial learning rate decayed by 10 every args.lr_decay_interval epochs """
learning_rate = self.base_lr * (0.1 ** (epoch // self.lr_decay_interval))
print('==> Set learning rate: %f' % learning_rate)
for param_group in self.optimizer.param_groups:
param_group['lr'] = learning_rate
def execute(self, end_epoch):
for epoch in range(self.start_epoch, end_epoch):
self.adjust_learning_rate(epoch)
self.train(epoch)
accuracy, loss = self.test(epoch)
# Save checkpoint.
if accuracy > self.best_accuracy:
print('==> Saving checkpoint..')
self.best_accuracy = accuracy
self.best_epoch = epoch
state = {
'start_epoch': epoch,
'best_epoch': self.best_epoch,
'best_accuracy': self.best_accuracy,
'state_dict': self.net.state_dict(),
}
torch.save(state, osp.join(self.save_dir, 'ckpt.t7'))
print('Epoch [%d], Best accuracy : %.2f from Epoch [%d]' % (
epoch, self.best_accuracy, self.best_epoch))