-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcascade_mask_rcnn.py
597 lines (503 loc) · 22.6 KB
/
cascade_mask_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import warnings
import megengine
import megengine.functional as F
import megengine.module as M
import numpy as np
import layers
from layers.basic.functional import batched_nms
from .loss import binary_cross_entropy
from .resnet_mge import build_conv_layer, build_norm_layer
from .mask_utils import do_paste_mask, mask_target
BYTES_PER_FLOAT = 4
GPU_MEM_LIMIT = 1024**3
class ConvModule(M.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias='auto',
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
with_spectral_norm=False,
padding_mode='zeros',
order=('conv', 'norm', 'act')):
super().__init__()
official_padding_mode = ['zeros', 'circular']
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.with_spectral_norm = with_spectral_norm
self.with_explicit_padding = padding_mode not in official_padding_mode
if self.with_explicit_padding:
raise NotImplementedError('')
self.order = order
self.with_norm = norm_cfg is not None
self.with_activation = act_cfg is not None
if bias == 'auto':
bias = not self.with_norm
self.with_bias = bias
conv_padding = 0 if self.with_explicit_padding else padding
self.conv = build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=conv_padding,
dilation=dilation,
groups=groups,
bias=bias
)
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = padding
self.dilation = self.conv.dilation
self.groups = self.conv.groups
if self.with_norm:
# norm layer is after conv layer
if order.index('norm') > order.index('conv'):
norm_channels = out_channels
else:
norm_channels = in_channels
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
self.add_module(self.norm_name, norm)
else:
self.norm_name = None
# norm layer is after conv layer
if self.with_norm:
# norm layer is after conv layer
if order.index('norm') > order.index('conv'):
norm_channels = out_channels
else:
norm_channels = in_channels
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
self.add_module(self.norm_name, norm)
else:
self.norm_name = None
if self.with_activation:
self.activate = M.ReLU()
self.init_weights()
@property
def norm(self):
if self.norm_name:
return getattr(self, self.norm_name)
else:
return None
def init_weights(self):
if not hasattr(self.conv, 'init_weights'):
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
nonlinearity = 'leaky_relu'
a = self.act_cfg.get('negative_slope', 0.01)
else:
nonlinearity = 'relu'
a = 0
M.init.msra_uniform_(self.conv.weight, a=a, nonlinearity=nonlinearity)
if self.with_norm:
M.init.ones_(self.norm, 1)
def add_module(self, name, module):
setattr(self, name, module)
def forward(self, x, activate=True, norm=True):
for layer in self.order:
if layer == 'conv':
if self.with_explicit_padding:
x = self.padding_layer(x)
x = self.conv(x)
elif layer == 'norm' and norm and self.with_norm:
x = self.norm(x)
elif layer == 'act' and activate and self.with_activation:
x = self.activate(x)
return x
class FCNMaskHead(M.Module):
def __init__(self,
num_convs=4,
roi_feat_size=14,
in_channels=256,
conv_kernel_size=3,
conv_out_channels=256,
num_classes=80,
class_agnostic=False,
upsample_cfg=dict(type='deconv', scale_factor=2),
conv_cfg=None,
norm_cfg=None,
predictor_cfg=dict(type='Conv')):
super().__init__()
self.upsample_cfg = upsample_cfg.copy()
if self.upsample_cfg['type'] not in [
None, 'deconv', 'nearest', 'bilinear', 'carafe'
]:
raise ValueError(
f'Invalid upsample method {self.upsample_cfg["type"]}, '
'accepted methods are "deconv", "nearest", "bilinear", '
'"carafe"')
self.num_convs = num_convs
self.roi_feat_size = (roi_feat_size, roi_feat_size)
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = self.upsample_cfg.get('type')
self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.predictor_cfg = predictor_cfg
self.convs = []
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
upsample_cfg_ = self.upsample_cfg.copy()
if self.upsample_method is None:
self.upsample = None
elif self.upsample_method == 'deconv':
upsample_cfg_.pop('type')
upsample_cfg_.update(
in_channels=upsample_in_channels,
out_channels=self.conv_out_channels,
kernel_size=self.scale_factor,
stride=self.scale_factor
)
self.upsample = M.ConvTranspose2d(**upsample_cfg_)
out_channels = 1 if self.class_agnostic else self.num_classes
out_channels = 1 if self.class_agnostic else self.num_classes
logits_in_channel = (
self.conv_out_channels
if self.upsample_method == 'deconv' else upsample_in_channels)
self.conv_logits = build_conv_layer(self.predictor_cfg,
logits_in_channel, out_channels, 1)
self.relu = M.ReLU()
def init_weights(self):
for m in [self.upsample, self.conv_logits]:
if m is None:
continue
else:
M.init.msra_uniform_(m.weight, mode='fan_out', nonlinearity='relu')
M.init.constant_(m.bias)
def loss_mask(self, pred, target, label):
num_rois = pred.shape[0]
inds = F.arange(0, num_rois).astype('int32')
# print(f"mask_pred.sum():{F.sum((F.sigmoid(pred[inds, label.astype('int32')]) > 0.5), 0)}")
# print(f"mask_targets.sum():{F.sum(target, 0)}")
return F.nn.binary_cross_entropy(pred[inds, label.astype('int32')], target)
def forward(self, x):
for conv in self.convs:
x = conv(x)
if self.upsample is not None:
x = self.upsample(x)
if self.upsample_method == 'deconv':
x = self.relu(x)
mask_pred = self.conv_logits(x)
return mask_pred
def get_targets(self, pos_proposals, pos_assigned_gt_inds, gt_masks, mask_size):
# pos_bboxes: 正样本的框
# pos_assigned_gt_inds: 正样本的assign的标签
mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
gt_masks, mask_size)
return mask_targets
def loss(self, mask_pred, mask_targets, labels):
if mask_pred.shape[0] == 0:
loss_mask = mask_pred.sum()
else:
if self.class_agnostic:
loss_mask = self.loss_mask(mask_pred, mask_targets,
F.zeros_like(labels))
else:
loss_mask = self.loss_mask(mask_pred, mask_targets, labels)
return loss_mask
class MaskHeader(M.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.stride = cfg.rcnn_stride
self.pooling_size = (cfg.pooling_size[0] * 2, cfg.pooling_size[1] * 2)
self.pooling_method = cfg.pooling_method
def forward(self, fpn_fms, rcnn_rois):
pool_features = layers.roi_pool(
fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.pooling_method,
)
return pool_features
class ROIHeader(M.Module):
'''
after RoiExtractor
before BBoxHeader(cls, reg)
'''
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.stride = cfg.rcnn_stride
self.pooling_size = cfg.pooling_size
self.pooling_method = cfg.pooling_method
self.fc1 = M.Linear(256 * cfg.pooling_size[0] * cfg.pooling_size[1], 1024)
self.fc2 = M.Linear(1024, 1024)
# self.fc2 = M.Identity()
self._init_weight()
def _init_weight(self):
for l in [self.fc1, self.fc2]:
M.init.normal_(l.weight, std=0.01)
M.init.fill_(l.bias, 0)
def forward(self, fpn_fms, rcnn_rois):
pool_features = layers.roi_pool(
fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.pooling_method,
)
flatten_feature = F.flatten(pool_features, start_axis=1)
roi_feature = F.relu(self.fc1(flatten_feature))
roi_feature = F.relu(self.fc2(roi_feature))
return roi_feature
class Predictor(M.Module):
'''
pool_features = roi_extractor(fpn_fms)
roi_feature = roi_header(pool_features)
pred_bbox, pred_scores = roi_predictor(roi_feature) # box encode, decode
'''
def __init__(self, cfg, index=0):
super().__init__()
self.cfg = cfg
self.index = index
self.is_last = (cfg.cascade_num_stages - 1 == index)
self.box_header = ROIHeader(cfg)
self.mask_header = MaskHeader(cfg)
self.box_coder = layers.BoxCoder(cfg.rcnn_reg_mean[index], cfg.rcnn_reg_std[index])
self.pred_cls = M.Linear(1024, cfg.num_classes + 1)
self.pred_delta = M.Linear(1024, (cfg.num_classes * 4 if cfg.class_aware_box else 4))
self.mask_predictor = FCNMaskHead(
num_convs=cfg.mask_num_convs,
roi_feat_size=cfg.mask_roi_feat_size,
in_channels=256,
conv_out_channels=256,
num_classes=cfg.num_classes,
class_agnostic=(not cfg.class_aware_box),
)
self._init_weight()
def _init_weight(self):
M.init.normal_(self.pred_cls.weight, std=0.01)
M.init.normal_(self.pred_delta.weight, std=0.001)
for l in [self.pred_cls, self.pred_delta]:
M.init.fill_(l.bias, 0)
def get_ground_truth(self, rpn_rois, im_info, gt_boxes):
if not self.training:
return rpn_rois, None, None, None, None, None
return_rois = []
return_labels = []
return_bbox_targets = []
return_gt_flags = []
return_pos_boxes = []
return_pos_assigned_gt_inds = []
# get per image proposals and gt_boxes
for bid in range(gt_boxes.shape[0]):
num_valid_boxes = im_info[bid, 4].astype("int32")
gt_boxes_per_img = gt_boxes[bid, :num_valid_boxes, :]
batch_inds = F.full((gt_boxes_per_img.shape[0], 1), bid)
gt_rois = F.concat([batch_inds, gt_boxes_per_img[:, :4]], axis=1)
batch_roi_mask = rpn_rois[:, 0] == bid
# all_rois : [batch_id, x1, y1, x2, y2]
# add gt boxes at rcnn_rois like mmdet
all_rois = F.concat([gt_rois, rpn_rois[batch_roi_mask]])
# all_rois = F.concat([rpn_rois[batch_roi_mask], gt_rois])
gt_flags = F.zeros((batch_roi_mask.sum(),)).astype("int32")
gt_ones = F.ones((gt_boxes_per_img.shape[0],)).astype("int32")
gt_flags = F.concat((gt_ones, gt_flags)).astype('bool')
overlaps = layers.get_iou(all_rois[:, 1:], gt_boxes_per_img)
max_overlaps = overlaps.max(axis=1)
gt_assignment = F.argmax(overlaps, axis=1).astype("int32")
labels = gt_boxes_per_img[gt_assignment, 4]
# ---------------- get the fg/bg labels for each roi ---------------#
fg_mask = (max_overlaps >= self.cfg.fg_threshold[self.index]) & (labels >= 0)
bg_mask = (
(max_overlaps >= self.cfg.bg_threshold_low[self.index])
& (max_overlaps < self.cfg.bg_threshold_high[self.index])
)
num_fg_rois = int(self.cfg.num_rois * self.cfg.fg_ratio[self.index])
fg_inds_mask = layers.sample_labels(fg_mask, num_fg_rois, True, False)
num_bg_rois = int(self.cfg.num_rois - fg_inds_mask.sum())
bg_inds_mask = layers.sample_labels(bg_mask, num_bg_rois, True, False)
labels[bg_inds_mask] = 0
gt_flags = gt_flags & fg_inds_mask
keep_mask = fg_inds_mask | bg_inds_mask
pos_boxes = all_rois[fg_mask]
pos_assigned_gt_inds = gt_assignment[fg_mask]
labels = labels[keep_mask].astype("int32")
rois = all_rois[keep_mask]
target_boxes = gt_boxes_per_img[gt_assignment[keep_mask], :4]
bbox_targets = self.box_coder.encode(rois[:, 1:], target_boxes)
bbox_targets = bbox_targets.reshape(-1, 4)
return_rois.append(rois)
return_labels.append(labels)
return_bbox_targets.append(bbox_targets)
return_gt_flags.append(gt_flags)
return_pos_boxes.append(pos_boxes)
return_pos_assigned_gt_inds.append(pos_assigned_gt_inds)
return (
F.concat(return_rois, axis=0).detach(),
F.concat(return_labels, axis=0).detach(),
F.concat(return_bbox_targets, axis=0).detach(),
F.concat(return_gt_flags, axis=0).detach(),
F.concat(return_pos_boxes, axis=0).detach(),
F.concat(return_pos_assigned_gt_inds, axis=0).detach(),
)
def refine_bboxes(self, labels, rcnn_rois, bbox_preds, gt_flags, im_info):
return_rois = []
for bid in range(im_info.shape[0]):
inds = (rcnn_rois[:, 0] == bid)
bboxes_ = rcnn_rois[inds, 1:]
if self.cfg.class_aware_box:
bbox_pred_ = bbox_preds[inds, labels[inds] - 1]
else:
bbox_pred_ = bbox_preds[inds]
im_info_ = im_info[bid]
pos_is_gt_ = gt_flags[inds]
bboxes = self.box_coder.decode(bboxes_, bbox_pred_) # (m, 4)
bboxes = layers.get_clipped_boxes(bboxes, im_info_[:2])
# keep = layers.filter_boxes(bboxes)
# bboxes = bboxes[keep]
keep_inds = ~pos_is_gt_
bboxes = bboxes[keep_inds]
if not self.is_last:
bboxes = F.concat([F.full((bboxes.shape[0], 1), bid, device=bboxes.device), bboxes], axis=1)
return_rois.append(bboxes)
return F.concat(return_rois, axis=0).detach()
def bbox_forward_train(self, pred_logits, pred_offsets, labels, bbox_targets, rcnn_rois, gt_flags, im_info):
# loss for rcnn classification
# loss_rcnn_cls = F.loss.cross_entropy(pred_logits, labels, axis=1)
loss_rcnn_cls = self.cfg.loss_rcnn_cls(pred_logits, labels)
# loss for rcnn regression
if self.cfg.class_aware_box:
pred_offsets = pred_offsets.reshape(-1, self.cfg.num_classes, 4)
else:
pred_offsets = pred_offsets.reshape(-1, 4)
num_samples = labels.shape[0]
fg_mask = labels > 0
loss_rcnn_bbox = layers.smooth_l1_loss(
(pred_offsets[fg_mask, labels[fg_mask] - 1] if self.cfg.class_aware_box else pred_offsets[fg_mask]),
bbox_targets[fg_mask],
self.cfg.rcnn_smooth_l1_beta,
).sum() / F.maximum(num_samples, 1)
loss_dict = {
f"rcnn_cls_{self.index}": loss_rcnn_cls * self.cfg.stage_loss_weights[self.index],
f"rcnn_bbox_{self.index}": loss_rcnn_bbox * self.cfg.stage_loss_weights[self.index],
}
if not self.is_last:
tmp_labels = (F.argmax(pred_logits[:, 1:], axis=1) + 1)
roi_labels = F.where(labels > 0, tmp_labels, labels)
return loss_dict, self.refine_bboxes(roi_labels, rcnn_rois, pred_offsets, gt_flags, im_info)
else:
return loss_dict, None
def mask_forward_train(self, mask_pred, pos_boxes, pos_assigned_gt_inds, gt_flags, gt_masks):
mask_targets = self.mask_predictor.get_targets(pos_boxes, pos_assigned_gt_inds, gt_masks, self.cfg.mask_size)
loss = self.mask_predictor.loss(mask_pred, mask_targets, F.zeros(mask_pred.shape[0]))
loss *= self.cfg.mask_loss_weight[self.index]
loss *= self.cfg.stage_loss_weights[self.index]
return {f"rcnn_mask_{self.index}": loss}
def inference(self, pred_logits, pred_offsets, rcnn_rois, im_info):
pred_bbox, pred_scores = self.get_det_bboxes(pred_logits, rcnn_rois, pred_offsets, im_info)
return pred_bbox, pred_scores
def get_det_bboxes(self, pred_logits, rcnn_rois, pred_offsets, im_info):
pred_scores = F.softmax(pred_logits, axis=1)[:, 1:]
pred_offsets = pred_offsets.reshape(-1, 4)
target_shape = (rcnn_rois.shape[0], self.cfg.num_classes, 4)
base_rois = rcnn_rois[:, 1:5]
if self.cfg.class_aware_box:
# (k, 4) -> (k, 1, 4) -> (k, num_classes, 4) -> (k * num_classes, 4)
base_rois = F.broadcast_to(F.expand_dims(base_rois, axis=1), target_shape).reshape(-1, 4)
pred_boxes = self.box_coder.decode(base_rois, pred_offsets).reshape(-1, 4)
clipped_boxes = layers.get_clipped_boxes(pred_boxes, im_info[0, :2])
if not self.is_last:
clipped_boxes = F.concat([F.zeros((clipped_boxes.shape[0], 1), device=clipped_boxes.device), clipped_boxes], axis=1)
return clipped_boxes, pred_scores
def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None, gt_masks=None):
rcnn_rois, labels, bbox_targets, gt_flags, pos_boxes, pos_assigned_gt_inds = self.get_ground_truth(
rcnn_rois, im_info, gt_boxes
)
# rcnn_rois: (n, 5)
if self.training:
fg_mask = labels > 0
if F.sum(fg_mask) == 0:
return {
f"rcnn_cls_{self.index}": 0,
f"rcnn_bbox_{self.index}": 0,
f"rcnn_mask_{self.index}": 0,
}, rcnn_rois
roi_feature = self.box_header(fpn_fms, rcnn_rois)
pred_logits = self.pred_cls(roi_feature)
pred_offsets = self.pred_delta(roi_feature)
if self.training:
mask_feature = self.mask_header(fpn_fms, pos_boxes)
mask_pred = self.mask_predictor(mask_feature)
loss_dict = {}
loss_bbox, rois = self.bbox_forward_train(pred_logits, pred_offsets, labels, bbox_targets, rcnn_rois, gt_flags, im_info)
loss_dict.update(loss_bbox)
loss_mask = self.mask_forward_train(mask_pred, pos_boxes, pos_assigned_gt_inds, gt_flags, gt_masks)
loss_dict.update(loss_mask)
return loss_dict, rois
else:
return self.inference(pred_logits, pred_offsets, rcnn_rois, im_info)
class CascadeMaskRCNN(M.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# roi head
self.in_features = cfg.rcnn_in_features
self.roi_headers = [
ROIHeader(cfg) for _ in range(cfg.cascade_num_stages)
]
# box predictor
self.predictors = [
Predictor(cfg, i) for i in range(cfg.cascade_num_stages)
]
def forward_train(self, fpn_fms, rcnn_rois, im_info, gt_boxes, gt_masks):
loss_dict = {}
rois, stage_loss_dict = rcnn_rois, None # (stage_loss_dict, rcnn_rois)
# print(f"init, rois.shape:{rois.shape}, {rois[0,:]}")
for i in range(self.cfg.cascade_num_stages):
# print(f"{i}, rois.shape:{rois.shape}, {rois[0,:]}")
stage_loss_dict, rois = self.predictors[i](fpn_fms, rois, im_info, gt_boxes, gt_masks)
loss_dict.update(stage_loss_dict)
return loss_dict, rois
def inference(self, fpn_fms, rcnn_rois, im_info, gt_boxes):
# ensemble of all stage classifiers
ms_scores = []
rois, pred_scores = rcnn_rois, None
for i in range(self.cfg.cascade_num_stages):
rois, pred_scores = self.predictors[i](fpn_fms, rois, im_info, gt_boxes)
ms_scores.append(megengine.tensor(pred_scores))
ms_scores = sum(ms_scores) / self.cfg.cascade_num_stages
keep = layers.filter_boxes(rois)
rois = rois[keep]
ms_scores = ms_scores[keep]
rois = F.broadcast_to(F.expand_dims(rois, axis=1), (rois.shape[0], self.cfg.num_classes, 4))
pred_bbox, pred_scores, pred_label = layers.multiclass_nms(
rois,
ms_scores,
self.cfg.test_nms,
self.cfg.test_cls_threshold,
self.cfg.num_classes,
self.cfg.class_aware_box,
self.cfg.test_max_boxes_per_image
)
return pred_bbox, pred_scores, pred_label
# keep = F.vision.nms(ms_bbox_result, ms_scores, self.cfg.self.test_nms)
# return ms_bbox_result[keep], ms_scores[keep]
def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None, gt_masks=None):
fpn_fms = [fpn_fms[x] for x in self.in_features]
if self.training:
output = self.forward_train(fpn_fms, rcnn_rois, im_info, gt_boxes, gt_masks)
return output[0]
else:
output = self.inference(fpn_fms, rcnn_rois, im_info, gt_boxes)
return output