This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_programming.cc
83 lines (73 loc) · 3.25 KB
/
linear_programming.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Linear programming example that shows how to use the API.
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
#include "ortools/linear_solver/linear_solver.pb.h"
namespace operations_research {
void RunLinearProgrammingExample() {
MPSolver solver("LinearProgrammingExample",
MPSolver::GLOP_LINEAR_PROGRAMMING);
const double infinity = solver.infinity();
// x and y are continuous non-negative variables.
MPVariable* const x = solver.MakeNumVar(0.0, infinity, "x");
MPVariable* const y = solver.MakeNumVar(0.0, infinity, "y");
// Objectif function: Maximize 3x + 4y.
MPObjective* const objective = solver.MutableObjective();
objective->SetCoefficient(x, 3);
objective->SetCoefficient(y, 4);
objective->SetMaximization();
// x + 2y <= 14.
MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 14.0);
c0->SetCoefficient(x, 1);
c0->SetCoefficient(y, 2);
// 3x - y >= 0.
MPConstraint* const c1 = solver.MakeRowConstraint(0.0, infinity);
c1->SetCoefficient(x, 3);
c1->SetCoefficient(y, -1);
// x - y <= 2.
MPConstraint* const c2 = solver.MakeRowConstraint(-infinity, 2.0);
c2->SetCoefficient(x, 1);
c2->SetCoefficient(y, -1);
LOG(INFO) << "Number of variables = " << solver.NumVariables();
LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
const MPSolver::ResultStatus result_status = solver.Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution!";
}
LOG(INFO) << "Solution:";
LOG(INFO) << "x = " << x->solution_value();
LOG(INFO) << "y = " << y->solution_value();
LOG(INFO) << "Optimal objective value = " << objective->Value();
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << solver.wall_time() << " milliseconds";
LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations";
LOG(INFO) << "x: reduced cost = " << x->reduced_cost();
LOG(INFO) << "y: reduced cost = " << y->reduced_cost();
const std::vector<double> activities = solver.ComputeConstraintActivities();
LOG(INFO) << "c0: dual value = " << c0->dual_value()
<< " activity = " << activities[c0->index()];
LOG(INFO) << "c1: dual value = " << c1->dual_value()
<< " activity = " << activities[c1->index()];
LOG(INFO) << "c2: dual value = " << c2->dual_value()
<< " activity = " << activities[c2->index()];
}
} // namespace operations_research
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
FLAGS_logtostderr = 1;
operations_research::RunLinearProgrammingExample();
return EXIT_SUCCESS;
}