-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
88 lines (73 loc) · 2.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# importing the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential,load_model
from keras.layers import Dense,Dropout,Activation,Flatten
from keras.optimizers import Adam
from sklearn import metrics
from sklearn.model_selection import train_test_split as tts
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint
import time
print("Libraries are imported....")
# loading the data
data = pd.read_csv("processed.csv")
print("Dataset loaded....")
# dividing the dataset into x and y
print("Dividing into dependent and independent feature....")
y = data['label'].values
x = data.drop('label',axis=1)
y = to_categorical(y)
print(x.shape,y.shape)
print("Dividing the dataset into train and test....")
xtrain, xtest, ytrain, ytest = tts(x,y,test_size=0.2,random_state=42,stratify=y)
print(xtrain.shape,ytrain.shape)
print(xtest.shape,ytest.shape)
print("Dividing is done....")
print("Making the model....")
model = Sequential(name="DigitClass")
model.add(Dense(128,input_shape=(40,)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(10,activation="softmax"))
checkpointer = ModelCheckpoint('DigitAudio.h5', save_best_only=True,monitor='val_loss',mode='auto')
print("Model architecture is done....")
model.compile(loss = "categorical_crossentropy", optimizer="adam",metrics=["accuracy"])
print("Model compiled....")
print("Training is starting....")
start = time.time()
hist = model.fit(xtrain,ytrain,batch_size=16,epochs=200,validation_data=(xtest, ytest),callbacks=[checkpointer])
print("Model training is over....")
print("Total Time taken: ",time.time()-start)
print("Model saved....")
# plotting the figures
print("Plotting the figures....")
plt.figure(figsize=(15,10))
plt.plot(hist.history['accuracy'],c='b',label='train')
plt.plot(hist.history['val_accuracy'],c='r',label='validation')
plt.title("Model Accuracy vs Epochs")
plt.xlabel("EPOCHS")
plt.ylabel("ACCURACY")
plt.legend(loc='lower right')
plt.savefig('./img/accuracy.png')
plt.figure(figsize=(15,10))
plt.plot(hist.history['loss'],c='orange',label='train')
plt.plot(hist.history['val_loss'],c='g',label='validation')
plt.title("Model Loss vs Epochs")
plt.xlabel("EPOCHS")
plt.ylabel("LOSS")
plt.legend(loc='upper right')
plt.savefig('./img/loss.png')
print("Figures saved in the disk....")
model=load_model("DigitAudio.h5")
# testing the model
print("Testing the model....")
print("The result obtained is...\n")
model.evaluate(xtest,ytest)