-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtop_k_computation.py
360 lines (245 loc) · 15.8 KB
/
top_k_computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
### Module implementing top-k edges computation phase ###
### Author: Andrea Mastropietro © All rights reserved ###
import os
from tqdm import tqdm
import json
import yaml
import torch
from torch_geometric.data import Data
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
from src.utils import create_edge_index, PLIDataset
with open("parameters.yml") as paramFile:
args = yaml.load(paramFile, Loader=yaml.FullLoader)
DATA_PATH = args["top_k_computation"]["DATA_PATH"]
PLOT = args["top_k_computation"]["PLOT"]
EXPLANATIONS_FOLDER = args["top_k_computation"]["EXPLANATIONS_FOLDER"]
TOP_K_VALUES = args["top_k_computation"]["TOP_K_VALUES"]
NODE_LABELS = args["top_k_computation"]["NODE_LABELS"]
IMAGE_FORMAT = args["top_k_computation"]["IMAGE_FORMAT"]
AFFINITY_GROUPS = ["low affinity", "medium affinity", "high affinity"]
#reduced version of the dataset builder to save computation time and memory
def generate_pli_dataset_dict_reduced(data_path):
directory = os.fsencode(data_path)
dataset_dict = {}
dirs = os.listdir(directory)
for file in tqdm(dirs):
interaction_name = os.fsdecode(file)
if os.path.isdir(data_path + interaction_name):
dataset_dict[interaction_name] = {}
G = None
with open(data_path + interaction_name + "/" + interaction_name + "_interaction_graph.json", 'r') as f:
data = json.load(f)
G = nx.Graph()
for node in data['nodes']:
G.add_node(node["id"], atom_type=node["attype"], origin=node["pl"])
for edge in data['edges']:
if edge["id1"] != None and edge["id2"] != None:
G.add_edge(edge["id1"], edge["id2"], weight= float(edge["length"]))
for node in data['nodes']:
nx.set_node_attributes(G, {node["id"]: node["attype"]}, "atom_type")
nx.set_node_attributes(G, {node["id"]: node["pl"]}, "origin")
dataset_dict[interaction_name]["networkx_graph"] = G
edge_index, edge_weight = create_edge_index(G, weighted=True)
dataset_dict[interaction_name]["edge_index"] = edge_index
dataset_dict[interaction_name]["edge_weight"] = edge_weight
num_nodes = G.number_of_nodes()
dataset_dict[interaction_name]["x"] = torch.full((num_nodes, 1), 1.0, dtype=torch.float) #dummy feature
return dataset_dict
pli_dataset_dict = generate_pli_dataset_dict_reduced(DATA_PATH + "/dataset/")
data_list = []
for interaction_name in tqdm(pli_dataset_dict):
edge_weight_sample = None
edge_weight_sample = pli_dataset_dict[interaction_name]["edge_weight"]
data_list.append(Data(x = pli_dataset_dict[interaction_name]["x"], edge_index = pli_dataset_dict[interaction_name]["edge_index"], edge_weight = pli_dataset_dict[interaction_name]["edge_weight"], networkx_graph = pli_dataset_dict[interaction_name]["networkx_graph"], interaction_name = interaction_name))
dataset = PLIDataset(".", data_list = data_list)
train_interactions = []
val_interactions = []
core_set_interactions = []
hold_out_interactions = []
with open(DATA_PATH + "pdb_ids/training_set.csv", 'r') as f:
train_interactions = f.readlines()
train_interactions = [interaction.strip() for interaction in train_interactions]
with open(DATA_PATH + "pdb_ids/validation_set.csv", 'r') as f:
val_interactions = f.readlines()
val_interactions = [interaction.strip() for interaction in val_interactions]
with open(DATA_PATH + "pdb_ids/core_set.csv", 'r') as f:
core_set_interactions = f.readlines()
core_set_interactions = [interaction.strip() for interaction in core_set_interactions]
with open(DATA_PATH + "pdb_ids/hold_out_set.csv", 'r') as f:
hold_out_interactions = f.readlines()
hold_out_interactions = [interaction.strip() for interaction in hold_out_interactions]
train_data = [dataset[i] for i in range(len(dataset)) if dataset[i].interaction_name in train_interactions]
val_data = [dataset[i] for i in range(len(dataset)) if dataset[i].interaction_name in val_interactions]
core_set_data = [dataset[i] for i in range(len(dataset)) if dataset[i].interaction_name in core_set_interactions]
hold_out_data = [dataset[i] for i in range(len(dataset)) if dataset[i].interaction_name in hold_out_interactions]
for affinity_group in AFFINITY_GROUPS:
print("Computing top k for " + affinity_group + " set")
num_relevant_edge_in_protein_list = {key: [] for key in TOP_K_VALUES}
num_relevant_edge_in_ligand_list = {key: [] for key in TOP_K_VALUES}
num_relevant_edge_in_between_list = {key: [] for key in TOP_K_VALUES}
num_total_relevant_edges_list = {key: [] for key in TOP_K_VALUES}
num_relevant_absolute_edge_in_protein_list = {key: [] for key in TOP_K_VALUES}
num_relevant_absolute_edge_in_ligand_list = {key: [] for key in TOP_K_VALUES}
num_relevant_absolute_edge_in_between_list = {key: [] for key in TOP_K_VALUES}
num_total_relevant_absolute_list = {key: [] for key in TOP_K_VALUES}
num_total_edge_in_protein_list = []
num_total_edge_in_ligand_list = []
num_total_edge_in_between_list = []
num_total_edges_in_graph_list = []
directory = EXPLANATIONS_FOLDER + affinity_group + "/"
test_interaction_name = None
test_interaction_index = None
for file in tqdm(os.listdir(directory)):
test_interaction_name = os.fsdecode(file)
# if test_interaction_name != SELECTED_INTERACTION_NAME:
# continue
test_interaction_path = directory + test_interaction_name
if os.path.isdir(test_interaction_path):
for i, interaction in enumerate(hold_out_data):
if interaction.interaction_name == test_interaction_name:
test_interaction_index = i
break
else:
continue
test_interaction = hold_out_data[test_interaction_index]
#read phi_edges from file
phi_edges = []
with open(directory + test_interaction_name + "/" + test_interaction_name + "_statistics.txt", 'r') as f:
shapley_computed = False
while not shapley_computed:
line = f.readline()
if line.strip().startswith("Shapley") or line.strip().startswith("Attributions"):
f.readline()
lines = f.readlines()
for line in lines:
phi_edges.append(float(line.strip().split(" ")[-1]))
shapley_computed = True
#plotting
num_bonds = test_interaction.networkx_graph.number_of_edges()
rdkit_bonds_phi = [0]*num_bonds
rdkit_bonds = {}
bonds = dict(test_interaction.networkx_graph.edges())
bonds = list(bonds.keys())
for i in range(num_bonds):
init_atom = bonds[i][0]
end_atom = bonds[i][1]
rdkit_bonds[(init_atom, end_atom)] = i
for i in range(len(phi_edges)):
phi_value = phi_edges[i]
init_atom = test_interaction.edge_index[0][i].item()
end_atom = test_interaction.edge_index[1][i].item()
if (init_atom, end_atom) in rdkit_bonds:
bond_index = rdkit_bonds[(init_atom, end_atom)]
rdkit_bonds_phi[bond_index] += phi_value
if (end_atom, init_atom) in rdkit_bonds:
bond_index = rdkit_bonds[(end_atom, init_atom)]
rdkit_bonds_phi[bond_index] += phi_value
G = test_interaction.networkx_graph
colors = ["red" if G.nodes[node]["origin"] == "L" else "lightblue" for node in G.nodes]
num_total_edge_in_protein = 0
num_total_edge_in_ligand = 0
num_total_edge_in_between = 0
atoms_origin = nx.get_node_attributes(G, 'origin')
for bond in bonds:
init_atom = bond[0]
end_atom = bond[1]
if atoms_origin[init_atom] == "P" and atoms_origin[end_atom] == "P":
num_total_edge_in_protein += 1
elif atoms_origin[init_atom] == "L" and atoms_origin[end_atom] == "L":
num_total_edge_in_ligand += 1
else:
num_total_edge_in_between += 1
num_total_edges_in_graph = num_total_edge_in_protein + num_total_edge_in_ligand + num_total_edge_in_between
num_total_edge_in_protein_list.append(num_total_edge_in_protein)
num_total_edge_in_ligand_list.append(num_total_edge_in_ligand)
num_total_edge_in_between_list.append(num_total_edge_in_between)
num_total_edges_in_graph_list.append(num_total_edges_in_graph)
with open(directory + test_interaction_name + "/" + test_interaction.interaction_name + "_statistics_top_k_edges.txt", "w+") as f:
f.write("Top k edges statistics\n\n")
absolute_phi = np.abs(rdkit_bonds_phi)
#sort indices according to decreasing phi values
indices_sorted = np.argsort(-absolute_phi)
for top_k_t in TOP_K_VALUES:
top_edges = indices_sorted[:top_k_t]
num_total_top_abs_edges = top_k_t
num_edge_in_protein = 0
num_edge_in_ligand = 0
num_edge_in_between = 0
atoms_origin = nx.get_node_attributes(G, 'origin')
edges_to_draw = []
edges_colors = []
edges_widths = []
for bond in bonds:
init_atom = bond[0]
end_atom = bond[1]
bond_index = rdkit_bonds[(init_atom, end_atom)]
if bond_index in top_edges:
if atoms_origin[init_atom] == "P" and atoms_origin[end_atom] == "P":
num_edge_in_protein += 1
edges_colors.append("darkblue")
elif atoms_origin[init_atom] == "L" and atoms_origin[end_atom] == "L":
num_edge_in_ligand += 1
edges_colors.append("darkred")
else:
num_edge_in_between += 1
edges_colors.append("darkgreen")
edges_widths.append(3)
edges_to_draw.append((init_atom, end_atom))
else:
edges_colors.append("lightgrey")
edges_widths.append(1.5)
if PLOT:
#draw graph with important edges
plt.figure(figsize=(10,10))
pos = nx.spring_layout(G)
nx.draw(G, pos=pos, node_size = 400, with_labels=NODE_LABELS, font_weight='bold', labels=nx.get_node_attributes(G, 'atom_type'), node_color=colors,edge_color=edges_colors, width=edges_widths, edge_cmap=plt.cm.bwr)
plt.savefig(directory + test_interaction_name + "/" + test_interaction.interaction_name + "_EdgeSHAPer_top_" + str(top_k_t) + "_edges_full_graph." + IMAGE_FORMAT, dpi=300)
plt.close()
#save original graph
if top_k_t == 25:
plt.figure(figsize=(10,10))
nx.draw(G, pos=pos, with_labels=NODE_LABELS, font_weight='bold', labels=nx.get_node_attributes(G, 'atom_type'), node_color=colors)
plt.savefig(directory + test_interaction_name + "/" + test_interaction.interaction_name + "_full_interaction_graph." + IMAGE_FORMAT, dpi=300)
plt.close()
with open(directory + test_interaction_name + "/" + test_interaction.interaction_name + "_statistics_top_k_edges.txt", "a") as f:
f.write("Top " + str(top_k_t) + " relevant edges\n\n")
if num_total_edge_in_protein == 0:
f.write("Number of relevant edges connecting protein pseudo-atoms: 0\n")
else:
f.write("Number of relevant edges connecting protein pseudo-atoms: " + str(num_edge_in_protein) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((num_edge_in_protein/num_total_top_abs_edges)*100, 1)) + "%\n")
if num_total_edge_in_ligand == 0:
f.write("Number of relevant edges connecting ligand pseudo-atoms: 0\n")
else:
f.write("Number of relevant edges connecting ligand pseudo-atoms: " + str(num_edge_in_ligand) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((num_edge_in_ligand/num_total_top_abs_edges)*100, 1)) + "%\n")
if num_total_edge_in_between == 0:
f.write("Number of relevant edges connecting protein and ligand pseudo-atoms: 0\n")
else:
f.write("Number of relevant edges connecting protein and ligand pseudo-atoms: " + str(num_edge_in_between) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((num_edge_in_between/num_total_top_abs_edges)*100, 1)) + "%\n\n")
num_total_top_abs_edges = num_edge_in_protein + num_edge_in_ligand + num_edge_in_between
num_relevant_edge_in_protein_list[top_k_t].append(num_edge_in_protein)
num_relevant_edge_in_ligand_list[top_k_t].append(num_edge_in_ligand)
num_relevant_edge_in_between_list[top_k_t].append(num_edge_in_between)
num_total_relevant_edges_list[top_k_t].append(num_total_top_abs_edges)
# print("num_edge_in_protein: " + str(num_total_top_abs_edges))
with open(directory + "/statistics_top_k_edges.txt", "w+") as f:
f.write("Top k edges statistics\n\n")
for top_k_t in TOP_K_VALUES:
with open(directory + "/statistics_top_k_edges.txt", "a") as f:
f.write("Top " + str(top_k_t) + " relevant edges\n\n")
f.write("Avg number of relevant edges in protein: " + str(round(np.mean(num_relevant_edge_in_protein_list[top_k_t]), 3)) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((np.mean(num_relevant_edge_in_protein_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100, 1)) + "%\n")
#same % w.r.t. total number of relevant edges above but without rounding
print("% w.r.t. total number of relevant edges: " + str((np.mean(num_relevant_edge_in_protein_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100) + "%\n")
f.write("Avg number of relevant edges in ligand: " + str(round(np.mean(num_relevant_edge_in_ligand_list[top_k_t]), 3)) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((np.mean(num_relevant_edge_in_ligand_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100, 1)) + "%\n")
#same % w.r.t. total number of relevant edges above but without rounding
print("% w.r.t. total number of relevant edges: " + str((np.mean(num_relevant_edge_in_ligand_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100) + "%\n")
f.write("Avg number of relevant edges in interaction: " + str(round(np.mean(num_relevant_edge_in_between_list[top_k_t]), 3)) + "\n")
f.write("% w.r.t. total number of relevant edges: " + str(round((np.mean(num_relevant_edge_in_between_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100, 1)) + "%\n\n")
# same % w.r.t. total number of relevant edges above but without rounding
print("% w.r.t. total number of relevant edges: " + str((np.mean(num_relevant_edge_in_between_list[top_k_t])/np.mean(num_total_relevant_edges_list[top_k_t]))*100) + "%\n\n")