-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (121 loc) · 6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import ast
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning import Trainer
from argparse import ArgumentParser
from model import SpeechRecognition
from dataset import Data, collate_fn_padd
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
class SpeechModule(LightningModule):
def __init__(self, model, args):
super(SpeechModule, self).__init__()
self.model = model
self.criterion = nn.CTCLoss(blank=28, zero_infinity=True)
self.args = args
def forward(self, x, hidden):
return self.model(x, hidden)
def configure_optimizers(self):
self.optimizer = optim.AdamW(self.model.parameters(), self.args.learning_rate)
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='min',
factor=0.50, patience=6)
return [self.optimizer], [self.scheduler]
def step(self, batch):
spectrograms, labels, input_lengths, label_lengths = batch
bs = spectrograms.shape[0]
hidden = self.model._init_hidden(bs)
hn, c0 = hidden[0].to(self.device), hidden[1].to(self.device)
output, _ = self(spectrograms, (hn, c0))
output = F.log_softmax(output, dim=2)
loss = self.criterion(output, labels, input_lengths, label_lengths)
return loss
def training_step(self, batch, batch_idx):
loss = self.step(batch)
logs = {'loss': loss, 'lr': self.optimizer.param_groups[0]['lr'] }
return {'loss': loss, 'log': logs}
def train_dataloader(self):
d_params = Data.parameters
d_params.update(self.args.dparams_override)
train_dataset = Data(json_path='/home/anass/Documents/SPEECH_PYTORCH/train_corpus.json', **d_params)
return DataLoader(dataset=train_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.data_workers,
pin_memory=True,
collate_fn=collate_fn_padd)
def validation_step(self, batch, batch_idx):
loss = self.step(batch)
return {'val_loss': loss}
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
self.scheduler.step(avg_loss)
tensorboard_logs = {'val_loss': avg_loss}
return {'val_loss': avg_loss, 'log': tensorboard_logs}
def val_dataloader(self):
d_params = Data.parameters
d_params.update(self.args.dparams_override)
test_dataset = Data(json_path='/home/anass/Documents/SPEECH_PYTORCH/validation_corpus.json', **d_params, valid=True)
return DataLoader(dataset=test_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.data_workers,
collate_fn=collate_fn_padd,
pin_memory=True)
# def checkpoint_callback(args):
# return ModelCheckpoint(
# filepath='/home/anass/Documents/SPEECH_PYTORCH/saved_models/',
# save_top_k=True,
# verbose=True,
# monitor='val_loss',
# mode='min',
# prefix=''
# )
def main(args):
h_params = SpeechRecognition.hyper_parameters
h_params.update(args.hparams_override)
model = SpeechRecognition(**h_params)
if args.load_model_from:
speech_module = SpeechModule.load_from_checkpoint(args.load_model_from, model=model, args=args)
else:
speech_module = SpeechModule(model, args)
logger = TensorBoardLogger(args.logdir, name='speech_recognition')
trainer = Trainer(logger=logger)
trainer = Trainer(
max_epochs=50, gpus=1,
num_nodes=1,
logger=logger, gradient_clip_val=1.0,
val_check_interval=args.valid_every,
#checkpoint_callback=checkpoint_callback(args),
resume_from_checkpoint=args.resume_from_checkpoint
)
trainer.fit(speech_module)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('-w', '--data_workers', default=0, type=int,
help='n data loading workers, default 0 = main process only')
parser.add_argument('-db', '--dist_backend', default='ddp', type=str,
help='which distributed backend to use. defaul ddp')
parser.add_argument('--valid_every', default=1000, required=False, type=int,
help='valid after every N iteration')
parser.add_argument('--load_model_from', default=None, required=False, type=str,
help='path to load a pretrain model to continue training')
parser.add_argument('--resume_from_checkpoint', default=None, required=False, type=str,
help='check path to resume from')
parser.add_argument('--logdir', default='tb_logs', required=False, type=str,
help='path to save logs')
parser.add_argument('--batch_size', default=64, type=int, help='size of batch')
parser.add_argument('--learning_rate', default=1e-3, type=float, help='learning rate')
parser.add_argument('--pct_start', default=0.3, type=float, help='percentage of growth phase in one cycle')
parser.add_argument('--div_factor', default=100, type=int, help='div factor for one cycle')
parser.add_argument("--hparams_override", default="{}", type=str, required=False,
help='override the hyper parameters, should be in form of dict. ie. {"attention_layers": 16 }')
parser.add_argument("--dparams_override", default="{}", type=str, required=False,
help='override the data parameters, should be in form of dict. ie. {"sample_rate": 8000 }')
args = parser.parse_args()
args.hparams_override = ast.literal_eval(args.hparams_override)
args.dparams_override = ast.literal_eval(args.dparams_override)
main(args)