-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCenterLossLayer.py
48 lines (38 loc) · 1.63 KB
/
CenterLossLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from keras.engine.topology import Layer
import keras.backend as K
class CenterLossLayer(Layer):
def __init__(self, alpha=0.5, **kwargs):
super().__init__(**kwargs)
self.alpha = alpha
def build(self, input_shape):
self.centers = self.add_weight(name='centers',
shape=(10, 10), # n_cls个n_dim的center_embedding
initializer='uniform',
trainable=False)
super().build(input_shape)
def call(self, x):
# x[0]: (N, n_dim) pred embedding
# x[1]: (N, n_cls) gt label
pred = K.relu(x[0])
# update center
delta_centers = K.dot(K.transpose(x[1]), (K.dot(x[1], self.centers) - pred)) # (n_cls, n_dim)
center_counts = K.sum(K.transpose(x[1]), axis=1, keepdims=True) + 1 # (n_cls, 1)
delta_centers /= center_counts
new_centers = self.centers - self.alpha * delta_centers
updates = []
updates.append((self.centers, new_centers))
self.add_update(updates, x)
# cal intra distance
dis = pred - K.dot(x[1], self.centers)
self.intra_dis = K.sum(dis ** 2, axis=1) #/ K.dot(x[1], center_counts) to balance the samples
return self.intra_dis
def compute_output_shape(self, input_shape):
return K.int_shape(self.intra_dis)
if __name__ == '__main__':
from keras.layers import Input
from keras.models import Model
pred = Input((3,))
gt = Input((3,))
loss = CenterLossLayer(alpha=0.5)([pred, gt])
model = Model([pred, gt], loss)
model.summary()