forked from NVIDIA/Cosmos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_dataset.py
188 lines (150 loc) · 7.07 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import json
import os
import random
import torch
import torchvision
from einops import rearrange
from huggingface_hub import snapshot_download
from nemo.collections.diffusion.models.model import DiT7BConfig
from tqdm import tqdm
from transformers import T5EncoderModel, T5TokenizerFast
from cosmos1.utils import log
def get_parser():
parser = argparse.ArgumentParser(description="Process some configurations.")
parser.add_argument("--tokenizer_dir", type=str, default="", help="Path to the VAE model")
parser.add_argument(
"--dataset_path", type=str, default="video_dataset", help="Path to the dataset (a folder of videos)"
)
parser.add_argument("--output_path", type=str, default="video_dataset_cached", help="Path to the output directory")
parser.add_argument("--prompt", type=str, default="a video of sks.", help="Prompt for the video")
parser.add_argument("--num_chunks", type=int, default=5, help="Number of random chunks to sample per video")
parser.add_argument("--height", type=int, default=704, help="Height to resize video")
parser.add_argument("--width", type=int, default=1280, help="Width to resize video")
return parser
def init_t5():
"""Initialize and return the T5 tokenizer and text encoder."""
tokenizer = T5TokenizerFast.from_pretrained("google-t5/t5-11b")
text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-11b")
text_encoder.to("cuda")
text_encoder.eval()
return tokenizer, text_encoder
def init_video_tokenizer(tokenizer_dir: str):
"""Initialize and return the Cosmos Video tokenizer."""
dit_config = DiT7BConfig(vae_path=tokenizer_dir)
vae = dit_config.configure_vae()
return vae
@torch.no_grad()
def encode_for_batch(tokenizer, encoder, prompts: list[str], max_length=512):
"""
Encode a batch of text prompts to a batch of T5 embeddings.
Parameters:
tokenizer: T5 embedding tokenizer.
encoder: T5 embedding text encoder.
prompts: A batch of text prompts.
max_length: Sequence length of text embedding (defaults to 512).
"""
batch_encoding = tokenizer.batch_encode_plus(
prompts,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=max_length,
return_length=True,
return_offsets_mapping=False,
)
# We expect all the processing is done on GPU.
input_ids = batch_encoding.input_ids.cuda()
attn_mask = batch_encoding.attention_mask.cuda()
outputs = encoder(input_ids=input_ids, attention_mask=attn_mask)
encoded_text = outputs.last_hidden_state
lengths = attn_mask.sum(dim=1).cpu()
for batch_id in range(encoded_text.shape[0]):
encoded_text[batch_id][lengths[batch_id] :] = 0
return encoded_text
def main(args):
# Set up output directory
os.makedirs(args.output_path, exist_ok=True)
# Initialize T5
tokenizer, text_encoder = init_t5()
# Initialize the VAE
if args.tokenizer_dir == "":
args.tokenizer_dir = snapshot_download("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8")
vae = init_video_tokenizer(args.tokenizer_dir)
# Constants
t5_embeding_max_length = 512
chunk_duration = vae.video_vae.pixel_chunk_duration # Frames per chunk
cnt = 0 # File index
# Check if dataset_path is correct
files = glob.glob(os.path.join(args.dataset_path, "*.mp4"))
if not files:
raise ValueError(f"Dataset path {args.dataset_path} does not contain any .mp4 files.")
# Process each video in the dataset folder
with torch.no_grad():
for video_path in tqdm(glob.glob(os.path.join(args.dataset_path, "*.mp4"))):
# Read video (T x H x W x C)
video, _, meta = torchvision.io.read_video(video_path)
T, H, W, C = video.shape
# Skip videos shorter than one chunk
if T < chunk_duration:
log.info(f"Video {video_path} is shorter than {chunk_duration} frames. Skipped.")
continue
# Sample random segments
for _ in range(args.num_chunks):
start_idx = random.randint(0, T - chunk_duration)
chunk = video[start_idx : start_idx + chunk_duration] # (chunk_duration, H, W, C)
# Rearrange dimensions: (T, H, W, C) -> (T, C, H, W)
chunk = rearrange(chunk, "t h w c -> t c h w")
# Resize to [704, 1280] for each frame
chunk = torchvision.transforms.functional.resize(chunk, [args.height, args.width])
# Expand dims: (T, C, H, W) -> (B=1, C, T, H, W)
chunk = rearrange(chunk, "(b t) c h w -> b c t h w", b=1)
# Convert to bf16 and normalize from [0, 255] to [-1, 1]
chunk = chunk.to(device="cuda", dtype=torch.bfloat16, non_blocking=True) / 127.5 - 1.0
# Encode video
latent = vae.encode(chunk).cpu() # shape: (1, latent_channels, T//factor, H//factor, W//factor)
# Encode text
out = encode_for_batch(tokenizer, text_encoder, [args.prompt])[0]
encoded_text = torch.tensor(out, dtype=torch.bfloat16)
# Pad T5 embedding to t5_embeding_max_length
L, C_ = encoded_text.shape
t5_embed = torch.zeros(1, t5_embeding_max_length, C_, dtype=torch.bfloat16)
t5_embed[0, :L] = encoded_text
# Save data to folder
torch.save(latent[0], os.path.join(args.output_path, f"{cnt}.video_latent.pth"))
torch.save(t5_embed[0], os.path.join(args.output_path, f"{cnt}.t5_text_embeddings.pth"))
# Create a T5 text mask of all ones
torch.save(
torch.ones(512, dtype=torch.bfloat16), os.path.join(args.output_path, f"{cnt}.t5_text_mask.pth")
)
# Save metadata
info = {
"height": H,
"width": W,
"fps": meta["video_fps"],
"num_frames": chunk_duration,
"video_path": os.path.basename(video_path),
"start_frame": start_idx,
}
with open(os.path.join(args.output_path, f"{cnt}.info.json"), "w") as json_file:
json.dump(info, json_file)
cnt += 1
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args)