-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot_DotComps2_Kr.m
348 lines (265 loc) · 10.2 KB
/
Plot_DotComps2_Kr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
%% Plot_DotComps2_Kr.m %%
%
% Analyzing New Shadow data
%
%
% Alistair Boettiger Date Begun: 03/05/10
% Levine Lab Functional Since: 09/13/10
% Last Modified: 03/07/11
%% Description
% comparison
%
%
%% Updates
% Modified 10/18 to also count ectopic nuclei
% Modified 02/28/11 to use cityscape and cumulative sum.
% Modified 03/07/11 to compare total reporter cells to total endogneous.
% Modified 03/16/11 to compute fraction of region activated for both
% endogenous and each reporter (relative to endogenous region).
%% Source Code
clear all;
folder = '/Volumes/Data/Lab Data/Shadow_data/Processed';
emb_roots = {'kr2enh_22C_LacZ_kr';
'krCD1_22C_LacZ_kr';
'krCD2_22C_LacZ_kr'
};
names = {'Kr 2 enhancers, 22C'; %
'Kr distal, 22C'; % CD1
'Kr proximal, 22C' % CD2
};
N = 40;
K = length(emb_roots);
G= length(names);
age_table = cell(1,K);
miss_cnt = cell(1,K);
miss_rate = cell(1,K);
nd = cell(1,K);
lowon = cell(1,K);
cell_var = cell(1,K);
ectop_cnt = cell(1,K);
ectop_rate = cell(1,K);
endog_cnt = cell(1,K);
rept_cnt = cell(1,K);
endog_frac = cell(1,K);
rept_frac = cell(1,K);
for z=1:K
miss_cnt{z} = zeros(N,1);
miss_rate{z} = zeros(N,1);
lowon{z} = zeros(N,1);
nd{z} = zeros(N,1);
age_table{z} = cell(N,2);
ectop_cnt{z} = zeros(N,1);
ectop_rate{z} = zeros(N,1);
endog_cnt{z} = zeros(N,1);
rept_cnt{z} = zeros(N,1);
endog_frac{z} = zeros(N,1);
rept_frac{z} = zeros(N,1);
end
xmin = .2; xmax = .9; ymin = .15; ymax = .4;
% as fractions of the original image dimensions.
for z=1:K % k=2;
for n= 1:N
if n<10
emb = ['0',num2str(n)];
else
emb = num2str(n);
end
try
load([folder,'/',emb_roots{z},emb,'_data.mat']);
% get the indices of all nuclei in green that are not also red.
% require these nuclei also fall in the 'region' for red nuclei.
miss_cnt{z}(n) = length(setdiff(pts2,pts1));
% miss_cnt{z}(n) = length(intersect(setdiff(pts2,pts1), ptr_nucin2));
% miss_cnt{z}(n) = anlz_major_reg(folder,emb_roots{z},emb );
endog_cnt{z}(n) = length(pts2);
rept_cnt{z}(n) = length(pts1);
miss_rate{z}(n) = miss_cnt{z}(n)/length(pts2);
% [lowon{z}(n),cell_var{z}(n)] = lowon_fxn(H,handles,nin2,ptr_nucin2,[emb_roots{z},emb],0);
ectop_cnt{z}(n) = length(intersect(setdiff(pts1,pts2),setdiff(ptr_nucin1,ptr_nucin2)'));
endog_frac{z}(n) = length(intersect(ptr_nucin2,pts2))/length(ptr_nucin2);
rept_frac{z}(n) = length(intersect(ptr_nucin1,pts1))/length(ptr_nucin2);
if length(H) > 2000
im_dim = 2048;
else
im_dim = 1024;
end
lims = round([xmin,xmax,ymin,ymax]*im_dim);
nd{z}(n) = NucDensity(cent,lims,0);
age_table{z}{n,1} = [folder,'/',emb_roots{z},emb,'_data.mat']; %
age_table{z}{n,2} = nd{z}(n);
ectop_rate{z}(n) = ectop_cnt{z}(n)/nd{z}(n);
catch ME
disp(ME.message);
end
end
end
close all;
data_folder = '/Users/alistair/Documents/Berkeley/Levine_Lab/Projects/Shadow Enhancers/Code_Data/';
save([data_folder,'kr_LacZ_data_031611']);
%save([data_folder,'kr_LacZ_data_030711']);
% save kr_LacZ_data2;
%save kr_LacZ_data_ect;
%%
%%
% clear all;
% data_folder = '/Users/alistair/Documents/Berkeley/Levine_Lab/Projects/Shadow Enhancers/Code_Data/';
% load([data_folder,'kr_LacZ_data_ect']);
%%
% load kr_LacZ_data_ect;
ND = cell2mat(nd);
emb_cycle = 4.8 + log2( nonzeros( sort(ND(:)) ) );
figure(10); clf; plot( emb_cycle ,'r.');
T_embs = length(nonzeros(ND(:))) ;
title(['kr embryos, N = ',num2str(T_embs) ],'FontSize',15);
set(gca,'FontSize',15); grid on;
set(gcf,'color','w'); ylabel('log_2(nuc density)'); xlabel('embryo number');
ylim([10,14.99]); xlim([0,T_embs + 10]);
%%
cc14 =cell(1,G); cc13 = cell(1,G); cc12 = cell(1,G); cc11 = cell(1,G); cc10 = cell(1,G); cc9 = cell(1,G);
for z=1:G
logage = 4.8 + log2( ND(:,z) );
cc14{z} = logage >14;
cc13{z} = logage <14 & logage> 13;
cc12{z} = logage <13 & logage > 12;
cc11{z} = logage <12 ;
end
%% Fraction of missing nuclei
F = 14;
xlab = 'fraction of missed nuclei';
names = {'Kr 2 enhancers, 22C'; %
'Kr distal, 22C'; % CD1
'Kr proximal, 22C' % CD2
};
colordef white;
plot_miss = cell(1,G);
for k=1:G; plot_miss{k} = miss_rate{k}(cc14{k}); end
data = plot_miss;
Ts = length(data);% number of tracks
pW = zeros(Ts);
pA = zeros(Ts);
for i=1:Ts
for j = 1:Ts
pW(i,j) = ranksum(data{i},data{j}); % Wilcox Rank Sum
pA(i,j)=anovan([data{i}',data{j}'],{[zeros(1,length(data{i})),ones(1,length(data{j}))]},'display','off'); % 2-way ANOVA
end
end
Wpvals = ['p_{CA} = ',num2str(pW(1,2),2), ' p_{CB} = ',num2str(pW(1,3),2) , ' p_{AB} = ',num2str(pW(2,3),2) ];
Apvals = ['p_{12} = ',num2str(pA(1,2),2), ' p_{13} = ',num2str(pA(1,3),2) , ' p_{23} = ',num2str(pA(2,3),2) ];
disp(['pairwise Wilcoxon rank sum: ', Wpvals]);
disp(['2-way ANOVA: ',Apvals]);
figure(1); clf;
cityscape(data,names,xlab,F);
figure(3); clf;
cumhist(data,names,xlab,F);
title(['pairwise Wilcoxon: ' Wpvals]);
set(gcf,'color','w');
disp([names{1}, ': ' ,num2str(median([data{1}])),'+/-',num2str(std([data{1}])), ' missing']);
disp([names{2}, ': ' ,num2str(median([data{2}])),'+/-',num2str(std([data{2}])), ' missing']);
disp([names{3}, ': ' ,num2str(median([data{3}])),'+/-',num2str(std([data{3}])), ' missing']);
%% Compare endog vs rept
F = 14;
xlab = 'expressing nuclei';
names = {'Kr 2 enhancers, Kr';
'Kr CD1, Kr'; % CD1
'Kr CD2, Kr' % CD2
'Kr 2 enhancers, LacZ';
'Kr CD1, LacZ'; % CD1
'Kr CD2, LacZ' % CD2
};
colordef white;
endog = cell(1,G);
rept = cell(1,G);
for k=1:G; endog{k} = endog_cnt{k}(cc14{k})./ND(cc14{k},k)/5; end
for k=1:G; rept{k} = rept_cnt{k}(cc14{k})./ND(cc14{k},k)/5; end
data = cat(2,endog,rept);
Ts = length(data);% number of tracks
pW = zeros(Ts);
pA = zeros(Ts);
for i=1:Ts
for j = 1:Ts
pW(i,j) = ranksum(data{i},data{j}); % Wilcox Rank Sum
pA(i,j)=anovan([data{i}',data{j}'],{[zeros(1,length(data{i})),ones(1,length(data{j}))]},'display','off'); % 2-way ANOVA
end
end
Wpvals = ['p_{14} = ',num2str(pW(1,4),2), ' p_{25} = ',num2str(pW(2,5),2) , ' p_{36} = ',num2str(pW(3,6),2) ];
Apvals = ['p_{14} = ',num2str(pA(1,4),2), ' p_{25} = ',num2str(pA(2,5),2) , ' p_{36} = ',num2str(pA(3,6),2) ];
disp(['pairwise Wilcoxon rank sum: ', Wpvals]);
disp(['2-way ANOVA: ',Apvals]);
figure(1); clf;
cityscape(data,names,xlab,F);
figure(3); clf;
cumhist(data,names,xlab,F);
title(['pairwise Wilcoxon: ' Wpvals]);
set(gcf,'color','w');
%% Ectopic expression rate
xlab = 'ectopic expression rate';
names = {'Kr 2 enhancers, 22C';
'Kr distal, 22C';
'Kr proximal, 22C'
};
plot_miss = cell(1,G);
for k=1:G; plot_miss{k} = ectop_rate{k}(cc14{k}); end
data = plot_miss;
Ts = length(data);% number of tracks
pW = zeros(Ts);
pA = zeros(Ts);
for i=1:Ts
for j = 1:Ts
pW(i,j) = ranksum(data{i},data{j}); % Wilcox Rank Sum
pA(i,j)=anovan([data{i}',data{j}'],{[zeros(1,length(data{i})),ones(1,length(data{j}))]},'display','off'); % 2-way ANOVA
end
end
Wpvals = ['p_{KI} = ',num2str(pW(1,2),2), ' p_{KJ} = ',num2str(pW(1,3),2) , ' p_{IJ} = ',num2str(pW(2,3),2) ];
Apvals = ['p_{12} = ',num2str(pA(1,2),2), ' p_{13} = ',num2str(pA(1,3),2) , ' p_{23} = ',num2str(pA(2,3),2) ];
disp(['pairwise Wilcoxon rank sum: ', Wpvals]);
disp(['2-way ANOVA: ',Apvals]);
figure(2); clf;
cityscape(data,names,xlab,F);
figure(4); clf;
cumhist(data,names,xlab,F);
title(['pairwise Wilcoxon: ' Wpvals]);
set(gcf,'color','w');
disp([names{1}, ': ' ,num2str(median([data{1}])),'+/-',num2str(std([data{1}])), ' missing']);
disp([names{2}, ': ' ,num2str(median([data{2}])),'+/-',num2str(std([data{2}])), ' missing']);
disp([names{3}, ': ' ,num2str(median([data{3}])),'+/-',num2str(std([data{3}])), ' missing']);
%% Fraction of Region Activated
F=14;
xlab = 'expressing nuclei';
names = {'Kr 2 enhancers, Kr';
'Kr distal, Kr'; % CD1
'Kr proximal, Kr' % CD2
'Kr 2 enhancers, LacZ';
'Kr distal, LacZ'; % CD1
'Kr proximal, LacZ' % CD2
};
colordef white;
endog = cell(1,G);
rept = cell(1,G);
for k=1:G; endog{k} = endog_frac{k}(cc14{k}); end
for k=1:G; rept{k} = rept_frac{k}(cc14{k}); end
data = cat(2,endog,rept);
Ts = length(data);% number of tracks
pW = zeros(Ts);
pA = zeros(Ts);
for i=1:Ts
for j = 1:Ts
pW(i,j) = ranksum(data{i},data{j}); % Wilcox Rank Sum
% pA(i,j)=anovan([data{i}',data{j}'],{[zeros(1,length(data{i})),ones(1,length(data{j}))]},'display','off'); % 2-way ANOVA
end
end
Wpvals = ['p_{14} = ',num2str(pW(1,4),2), ' p_{25} = ',num2str(pW(2,5),2) , ' p_{36} = ',num2str(pW(3,6),2) ];
Apvals = ['p_{14} = ',num2str(pA(1,4),2), ' p_{25} = ',num2str(pA(2,5),2) , ' p_{36} = ',num2str(pA(3,6),2) ];
disp(['pairwise Wilcoxon rank sum: ', Wpvals]);
disp(['2-way ANOVA: ',Apvals]);
figure(1); clf;
cityscape(data,names,xlab,F);
figure(3); clf;
cumhist(data,names,xlab,F);
title(['pairwise Wilcoxon: ' Wpvals]);
set(gcf,'color','w');
disp([names{1}, ': ' ,num2str(median([data{1}])),'+/-',num2str(std([data{1}])), ' missing']);
disp([names{2}, ': ' ,num2str(median([data{2}])),'+/-',num2str(std([data{2}])), ' missing']);
disp([names{3}, ': ' ,num2str(median([data{3}])),'+/-',num2str(std([data{3}])), ' missing']);
disp([names{4}, ': ' ,num2str(median([data{4}])),'+/-',num2str(std([data{4}])), ' missing']);
disp([names{5}, ': ' ,num2str(median([data{5}])),'+/-',num2str(std([data{5}])), ' missing']);
disp([names{6}, ': ' ,num2str(median([data{6}])),'+/-',num2str(std([data{6}])), ' missing']);