-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalternative_solutions_main.py
96 lines (85 loc) · 4.09 KB
/
alternative_solutions_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import sys
import os
from src.models.evolutionary_algorithm.ea_methods import EA
from src.utils.image_processor import ImageProcessor
from src.models.alternatives.local_search import LocalSearchSolver
def get_arguments() -> dict:
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0, help="Seed for random number generator")
# Image Processing
parser.add_argument("--input_path", type=str, default="./data/inputs")
parser.add_argument("--input_name", type=str, default="fox.png", required=True)
parser.add_argument("--output_path", type=str, default="./data/outputs/executions")
parser.add_argument("--output_name", type=str, default="polygonal_local_search_result.png")
parser.add_argument("--width", type=int, default=None, help="Maximum width")
parser.add_argument("--height", type=int, default=None, help="Maximum height")
# Polygons
parser.add_argument("--vertex_count", type=int, default=50, required=True, help=f"Number of vertex")
parser.add_argument("--tri_outline", type=int, default=None, help=f"Color of triangle outline")
# Local search parameters
parser.add_argument("--method", type=str, default="gaussian", help=f"gaussian or local_search")
parser.add_argument("--threshold", type=int, default=5, help=f"Threshold for local search or standard deviation for gaussian")
parser.add_argument("--max_iter", type=int, default=100, help=f"Maximum number of iterations")
parser.add_argument("--max_evals", type=int, default=100, help=f"Maximum number of evaluations")
parser.add_argument("--verbose", type=int, default=1, help=f"Prints information about the process")
return vars(parser.parse_args())
def check_preconditions(args):
# Chek values' domains
if args["width"] is not None and args["width"] < 0:
raise Exception("Invalid image width")
if args["height"] is not None and args["height"] < 0:
raise Exception("Invalid image height")
if args["vertex_count"] < 5:
raise Exception("Invalid vertex count, must be at least 5")
if args["method"] not in ["gaussian", "local_search"]:
raise Exception("Invalid method. Try (gaussian or local_search)")
if args["threshold"] < 1:
raise Exception("Threshold must be at least 1")
if args["max_iter"] < 1:
raise Exception("Max iter must be at least 1")
if args["max_evals"] < 1:
raise Exception("Max evals must be at least 1")
if args["verbose"] not in [0, 1]:
raise Exception("Verbose must be 0 or 1")
# Check directories
if not os.path.isdir(args["input_path"]):
raise Exception(f"Input path {args['input_path']} does not exist")
if not os.path.isfile(os.path.join(args["input_path"], args["input_name"])):
raise Exception(f"Input file {args['input_name']} does not exist in {args['input_path']}")
if not os.path.isdir(args["output_path"]):
raise Exception("Output path does not exist")
return args
def process_arguments():
try:
args = get_arguments()
args = check_preconditions(args)
except Exception as e:
print(str(e))
sys.exit(1)
return args
# Command example:
# python alternative_solutions_main.py --input_name womhd.jpg --vertex_count 1000 --width 250 --height 250 --method gaussian --threshold 100 --max_iter 5000
def main(args):
ip = ImageProcessor(**args)
ea = EA(ip)
alt_solver = LocalSearchSolver(ea)
seed = args["seed"]
method = args["method"]
max_iter = args["max_iter"]
threshold = args["threshold"]
max_evals = args["max_evals"]
verbose = args["verbose"]
output_path = args["output_path"]
output_name = args["output_name"]
output_filepath = os.path.join(output_path, output_name)
alt_solver.build_ea_module()
alt_solver.update_seed(seed)
best_individual, _ = alt_solver.solve(method, max_iter, threshold,
max_evals, verbose= verbose)
img = ea.decode(best_individual)
img.save(output_filepath)
img.show()
if __name__ == "__main__":
args = process_arguments()
main(args)