-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
492 lines (454 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#!/usr/bin/env python3
import torch
import numpy as np
from time import time
from pathlib import Path
from typing import NamedTuple, Optional, Any
from sklearn.metrics import roc_auc_score, f1_score
from torch.nn.functional import normalize
from tqdm import tqdm
from parser import argument_parser
from datasets import DATASET_LOADERS
from model import Model
# from torch_geometric.nn.models.gnn_explainer import GNNExplainer
from batched_explainer import BatchedGNNExplainer as GNNExplainer
from PGMEx import PGMExplainer
from intgrad import IntegratedGradExplainer
DEVICE = "cpu"
HERE = Path(__file__).parent
CONVERGENCE_DIR = HERE / "convergence_files"
CONVERGENCE_DIR.mkdir(exist_ok=True)
class PerformanceResults(NamedTuple):
train_acc: float
val_acc: float
test_acc: float
train_auroc: float
val_auroc: float
test_auroc: float
test_f1_score: float
# region main ---------------------------------
def main(
dataset: str,
arch: str,
explainer: str,
num_layers: int = 3,
batch_size: int = 200,
seed: int = 912,
epochs:int = 150,
model_saving_lag: int = 25,
vanilla_mode: bool = False,
lr_gnn=0.01,
explainer_iters=5,
correct_sampling_percent=0.4,
explanations_lag=20,
explanation_topk_thresh=0.3,
lr_gnnex=0.01,
explainer_epochs=200,
):
out_dir = HERE / f"{dataset}-{arch}"
out_dir.mkdir(exist_ok = True)
convergence_file_stem = f"loss-lrgnn_{lr_gnn}-seed_{seed}"
best_model_path = out_dir / f"{convergence_file_stem}-best.pth"
# Initialize all placeholder variables that are updated in the loop
preds = None
use_explanations = False
best_auroc_val = 0
oversmoothing = 0
# Load explainer, data, model, optimizer, loss function
dataset_loader = DATASET_LOADERS.get(dataset)
if dataset_loader is None:
raise ValueError("Invalid dataset")
train_loader, val_loader, test_loader = dataset_loader(
seed=seed, batch_size=batch_size, split_train_val_test=True
)
n_feat = guess_n_features(train_loader)
model = Model(
nhid=32,
nfeat=n_feat,
nclass=2,
dropout=0.0,
num_layers=num_layers,
gnn_arch=arch,
).to(DEVICE)
sample_weights = cal_weights_model(train_loader)
optimizer = torch.optim.Adam(model.parameters(), lr=lr_gnn)
criterion = torch.nn.CrossEntropyLoss(weight=sample_weights)
explainer = get_explainer(
explainer=explainer,
model=model,
explainer_epochs=explainer_epochs,
lr_gnnex=lr_gnnex,
criterion=criterion,
)
# Begin train-test-explanation loop
for epoch in tqdm(range(epochs)):
epoch_start_time = time()
if not vanilla_mode and epoch > explanations_lag:
use_explanations = True
avg_loss = train(
model=model,
train_loader=train_loader,
optimizer=optimizer,
criterion=criterion,
preds=preds,
explainer=explainer,
use_explanations=use_explanations,
explainer_iters=explainer_iters,
correct_sampling_percent=correct_sampling_percent,
explanation_topk_thresh=explanation_topk_thresh,
)
output_train, performance = evaluate_performance(
train_loader, val_loader, test_loader, model
)
preds = output_train
model_saving_lag = 25 if model_saving_lag is None else model_saving_lag
if epoch >= model_saving_lag and performance.val_auroc >= best_auroc_val:
best_auroc_val = performance.val_auroc
torch.save(
model.state_dict(),
best_model_path
)
log_progress(
epoch, avg_loss, performance, oversmoothing, convergence_file_stem, epoch_start_time
)
# Oversmoothing
oversmoothing = calculate_oversmoothing(
model=model,
dataset_loader=dataset_loader,
seed=seed,
batch_size=batch_size,
best_model_path=best_model_path,
)
log_progress(
epoch, avg_loss, performance, oversmoothing, convergence_file_stem, epoch_start_time
)
# endregion main
# region Functions ---------------------------------
def guess_n_features(train_loader) -> int:
# TODO test that this works
first_batch = train_loader.dataset[0]
# print(
# "num_nodes", first_batch.num_nodes,
# "num_edges", first_batch.num_edges,
# "num_node_features", first_batch.num_node_features,
# "num_edge_features", first_batch.num_edge_features
# )
return first_batch.num_node_features
def cal_weights_model(dataset):
"Calculate weights for weighted cross entropy loss to address data imbalance"
labels = []
for data in dataset:
labels += data.y.tolist()
labels_tensor = torch.tensor(labels).squeeze()
n_positive = labels_tensor.nonzero().size(0)
n_negative = labels_tensor.size(0) - n_positive
n_full = labels_tensor.size(0)
weights = torch.tensor([n_full / (2 * n_negative), n_full / (2 * n_positive)])
return weights
def get_explainer(
explainer: str,
model: Model,
explainer_epochs: Optional[int] = None,
lr_gnnex: Optional[float] = None,
criterion: Optional[Any] = None
):
if explainer == "gnn_explainer":
return GNNExplainer(
model, epochs=explainer_epochs, lr=lr_gnnex, return_type="raw", log=False
)
return
if explainer == "pgmexplainer":
return PGMExplainer(model=model, graph=None)
if explainer == "intgradexplainer":
return IntegratedGradExplainer(model, criterion)
raise ValueError(
'`explainer` must be one of: ("gnn_explainer", "pgmexplainer", "intgradexplainer")'
)
def train(
model,
train_loader,
optimizer,
criterion,
preds,
explainer,
use_explanations: bool,
explainer_iters: int=5,
correct_sampling_percent: float=0.05,
explanation_topk_thresh: float=0.25,
):
losses = []
for idx, data in enumerate(train_loader):
model.eval()
# NOTE: Use `scores_edges = weights_graphs[idx.item()]` if you want to
# use the explanations that were obtained in the previous loop
input_data = data.x
scores = get_default_scores(data, explainer)
if use_explanations and preds is not None:
scores = []
# Use the explanations that were obtained in the previous loop
# Uses predictions for previous epoch from a selected batch through 'idx'
sampled_correct_indices = sample_correct_indices(
pred=preds[idx],
gtruth=data.y,
correct_sampling_percent=correct_sampling_percent
)
scores = get_explainer_scores(
data=data,
model=model,
explainer=explainer,
sampled_correct_indices=sampled_correct_indices,
explainer_iters=explainer_iters,
use_explanations=use_explanations,
explanation_topk_thresh=explanation_topk_thresh,
)
if isinstance(explainer, PGMExplainer) or isinstance(explainer, IntegratedGradExplainer):
input_data = scores
scores = None
model.train() # Change to training mode
optimizer.zero_grad() # Clear gradients.
out = model(input_data, data.edge_index, scores, data.batch)
loss = criterion(out, data.y)
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
losses.append(loss)
avg_loss = sum(losses) / len(train_loader.dataset)
return avg_loss
def get_default_scores(data, explainer):
if isinstance(explainer, GNNExplainer):
return torch.ones(data.edge_index.shape[1])
if isinstance(explainer, PGMExplainer):
return None
if isinstance(explainer, IntegratedGradExplainer):
return None
raise ValueError(f"Invalid explainer class passed: '{type(explainer)}'")
def sample_correct_indices(pred, gtruth, correct_sampling_percent: float = 0.5) -> np.ndarray:
"""
Takes predictions from model, returns the indices of a subset of the
correct predictions
"""
cor_idx = np.where(pred.cpu() == gtruth)[0]
samples = int(correct_sampling_percent * cor_idx.size)
if samples < 1:
samples = 1
if cor_idx.shape[0] == 0:
return np.array([])
else:
sampled_idx = np.random.choice(cor_idx, samples)
return sampled_idx
def get_explainer_scores(
data,
model,
explainer,
sampled_correct_indices,
explainer_iters: int,
use_explanations: bool,
explanation_topk_thresh: float,
):
scores = []
for i in range(data.num_graphs):
if i in sampled_correct_indices:
# Generating explanations for sampled graphs from batch
graph_scores = _get_sampled_nodes_or_edge_scores(
data=data,
idx=i,
model=model,
explainer=explainer,
explainer_iters=explainer_iters,
use_explanations=use_explanations,
explanation_topk_thresh=explanation_topk_thresh,
)
else:
# Default weights for non-sampled graphs
graph_scores = _get_remaining_nodes_or_edge_scores(
data=data, idx=i, explainer=explainer,
)
scores.extend(graph_scores)
if isinstance(explainer, GNNExplainer):
scores = torch.Tensor(scores)
if isinstance(explainer, PGMExplainer) or isinstance(explainer, IntegratedGradExplainer):
# changing shape to match data.x nodes
scores = torch.tensor(scores).view(data.x.shape[0], 1)
# applying weights to nodes
scores = scores * data.x
return scores
def _get_sampled_nodes_or_edge_scores(
data,
idx,
model,
explainer,
explainer_iters: int,
use_explanations: bool,
explanation_topk_thresh: float,
):
if isinstance(explainer, GNNExplainer):
scores_edges = normalized_explanation_median(
data[idx], explainer_iters, explainer, use_explanations, explanation_topk_thresh
)
scores_edges = scores_edges.detach().cpu().numpy()
return scores_edges
if isinstance(explainer, PGMExplainer):
explainer = PGMExplainer(model, data[idx])
_, p_values, _ = explainer.explain(
num_samples=1000,
percentage=10,
top_node=3,
p_threshold=0.05,
pred_threshold=0.1,
)
scores_nodes = [1 - j for j in p_values]
scores_nodes = torch.tensor(scores_nodes, dtype=data[idx].x.dtype)
return scores_nodes
if isinstance(explainer, IntegratedGradExplainer):
model_kwargs = {"batch": data[idx].batch, "edge_weight": None}
exp = explainer.get_explanation_graph(
edge_index=data[idx].edge_index,
x=data[idx].x,
y=data[idx].y,
forward_kwargs=model_kwargs,
)
scores_nodes = exp.node_imp
scores_nodes = normalize(scores_nodes, dim=0)
scores_nodes = scores_nodes.detach().cpu()
return scores_nodes
raise ValueError(f"Invalid explainer class passed: '{type(explainer)}'")
def _get_remaining_nodes_or_edge_scores(data, idx, explainer):
if isinstance(explainer, GNNExplainer):
remaining_edges = torch.ones_like(data[idx].edge_index[1])
remaining_edges = remaining_edges.detach().cpu().numpy()
return remaining_edges
if isinstance(explainer, PGMExplainer):
return torch.ones(data[idx].x.shape[0], dtype=data[idx].x.dtype)
if isinstance(explainer, IntegratedGradExplainer):
remaining_nodes = torch.ones(data[idx].x.shape[0])
remaining_nodes = remaining_nodes.detach().cpu()
return remaining_nodes
raise ValueError(f"Invalid explainer class passed: '{type(explainer)}'")
def normalized_explanation_median(
data,
iters: int,
explainer: GNNExplainer,
use_explanations: bool,
explanation_topk_thresh: float,
):
"Finds the normalized median of multiple explanations on the same data point"
weigths_iters = []
for it in range(iters):
_, scores_edges = explainer.explain_graph(
x = data.x,
edge_index = data.edge_index,
edge_weight=None,
use_explanations=use_explanations
)
weigths_iters.append(scores_edges)
scores_edges = torch.stack(weigths_iters).median(0)[0]
# Normalise weights
scores_edges = (scores_edges - scores_edges.min()) / (
scores_edges.max() - scores_edges.min()
)
thresh = scores_edges.topk(int(explanation_topk_thresh * data.edge_index.shape[1]))[0][-1]
scores_edges = torch.where(scores_edges >= thresh, 1.0, 0.0)
return scores_edges
def test(loader, model):
model.eval()
preds = []
labels = []
for data in loader:
out = model(data.x, data.edge_index, None, data.batch)
pred = out.argmax(dim=1)
preds.append(pred)
labels.append(data.y)
preds = torch.cat(preds)
labels = torch.cat(labels)
accuracy = (preds == labels).float().mean()
return preds, labels, accuracy
def evaluate_performance(train_loader, val_loader, test_loader, model):
output_train, labels_train, train_acc = test(train_loader, model)
output_val, labels_val, val_acc = test(val_loader, model)
output_test, labels_test, test_acc = test(test_loader, model)
train_auroc = roc_auc_score(labels_train, output_train)
val_auroc = roc_auc_score(labels_val, output_val)
test_auroc = roc_auc_score(labels_test, output_test)
test_f1_score = f1_score(labels_test, output_test)
performance = PerformanceResults(
train_acc=train_acc,
val_acc=val_acc,
test_acc=test_acc,
train_auroc=train_auroc,
val_auroc=val_auroc,
test_auroc=test_auroc,
test_f1_score=test_f1_score,
)
return output_train, performance
def log_progress(
epoch: int,
avg_loss: float,
performance: PerformanceResults,
oversmoothing: float,
convergence_file_stem: str,
epoch_start_time: float,
):
metrics = {
"Epoch": epoch,
"Train Loss": avg_loss,
"Train Acc": performance.train_acc,
"Test Acc": performance.test_acc,
"Train AUROC": performance.train_auroc,
"Val AUROC": performance.val_auroc,
"Test AUROC": performance.test_auroc,
"Test F1": performance.test_f1_score,
"Val Acc": performance.val_acc,
"Oversmoothing": oversmoothing,
}
metrics_formatted = [
f"{metric_name}: {metric_value:.4f}"
for metric_name, metric_value in metrics.items()
]
progress_string = ", ".join(metrics_formatted)
if epoch % 25 == 0:
print(progress_string)
with open(CONVERGENCE_DIR / f"{convergence_file_stem}.csv", "a") as f:
f.write(progress_string + "\n")
# print(f"Elapsed: {time() - epoch_start_time:.3f}s")
def calculate_oversmoothing(model, dataset_loader, seed, batch_size, best_model_path):
graph_embedding = torch.Tensor()
graph_label = torch.Tensor()
model.eval()
dataset = dataset_loader(
seed=seed, batch_size=batch_size, split_train_val_test=False
)
model.load_state_dict(torch.load(best_model_path))
for data in dataset:
embedding = model.embed(data.x, data.edge_index, None, data.batch)
graph_embedding = torch.cat((graph_embedding, embedding))
graph_label = torch.cat((graph_label, data.y))
oversmoothing = calculate_gdr(graph_label, graph_embedding)
return oversmoothing
def calculate_gdr(label, embedding):
X_labels = []
for i in label.unique():
X_label = embedding[label == i].data.cpu().numpy()
h_norm = np.sum(np.square(X_label), axis=1, keepdims=True)
h_norm[h_norm == 0.0] = 1e-3
X_label = X_label / np.sqrt(h_norm)
X_labels.append(X_label)
dis_intra = 0.0
for i in label.unique():
x2 = np.sum(np.square(X_labels[int(i)]), axis=1, keepdims=True)
dists = x2 + x2.T - 2 * np.matmul(X_labels[int(i)], X_labels[int(i)].T)
dis_intra += np.mean(dists)
dis_intra /= label.unique().shape[0]
dis_inter = 0.0
for i in range(label.unique().shape[0] - 1):
for j in range(i + 1, label.unique().shape[0]):
x2_i = np.sum(np.square(X_labels[int(i)]), axis=1, keepdims=True)
x2_j = np.sum(np.square(X_labels[int(j)]), axis=1, keepdims=True)
dists = x2_i + x2_j.T - 2 * np.matmul(X_labels[i], X_labels[j].T)
dis_inter += np.mean(dists)
num_inter = float(label.unique().shape[0] * (label.unique().shape[0] - 1) / 2)
dis_inter /= num_inter
return dis_inter / dis_intra
# endregion
if __name__ == "__main__":
args = argument_parser.parse_known_args()[0]
# print(args)
main(**vars(args))