-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPrepare_Data.py
136 lines (116 loc) · 6.43 KB
/
Prepare_Data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
"""
Create datasets and dataloaders for models
"""
## Python standard libraries
from __future__ import print_function
from __future__ import division
import numpy as np
import pdb
from sklearn.model_selection import train_test_split
from pytorch_metric_learning import samplers
import ssl
## PyTorch dependencies
import torch
## Local external libraries
from Datasets.Pytorch_Datasets import *
from Datasets.Get_transform import *
from Datasets import preprocess
from Datasets import loader
def collate_fn_train(data):
data, labels, index = zip(*data)
data = torch.stack(data)
labels = torch.stack(labels)
data = data_transforms["train"]({"image":data.float()})
index = torch.Tensor(index)
return data["image"].float(), labels.float(), index
def collate_fn_test(data):
data, labels, index = zip(*data)
data = torch.stack(data)
labels = torch.stack(labels)
data = data_transforms["test"]({"image":data.float()})
index = torch.Tensor(index)
return data["image"].float(), labels.float(), index
def Prepare_DataLoaders(Network_parameters, split,input_size=224, view_results = True):
ssl._create_default_https_context = ssl._create_unverified_context
Dataset = Network_parameters['Dataset']
data_dir = Network_parameters['data_dir']
dataset_sampler = {}
# Data augmentation and normalization for training
# Just normalization and resize for test
# Data transformations as described in:
# http://openaccess.thecvf.com/content_cvpr_2018/papers/Xue_Deep_Texture_Manifold_CVPR_2018_paper.pdf
global data_transforms
data_transforms, mean, std = get_transform(Network_parameters, input_size=input_size)
Network_parameters['mean'] = mean
Network_parameters['std'] = std
if Dataset == 'UCMerced': #See people also use .5, .5 for normalization
train_dataset = UCMerced_Index(root = data_dir,split='train', transform = data_transforms['train'], download=True)
test_dataset = UCMerced_Index(data_dir,split='test', transform = data_transforms['test'], download=True)
val_dataset = UCMerced_Index(data_dir,split='val', transform = data_transforms['test'], download=True)
elif Dataset == 'Eurosat_MSI': #See people also use .5, .5 for normalization
train_dataset = Eurosat_MSI(root = data_dir,split='train', transform = None, download=True)
test_dataset = Eurosat_MSI(data_dir,split='test', transform = None, download=True)
val_dataset = Eurosat_MSI(data_dir,split='val', transform = None, download=True)
elif Dataset == 'MSTAR':
#Load training and testing data
#Break up training into train and val paritions (default is 80/20)
train_dataset = loader.MSTAR_Dataset(data_dir, name='eoc-1-t72-a64', is_train=True,
transform=data_transforms['test'])
X = np.arange(0,len(train_dataset))
y = train_dataset.targets
#Set random state to keep the data the same order for each model
X_train, X_val, y_train, y_val = train_test_split(X,y,test_size=.2,stratify=y,
random_state=42)
train_dataset = torch.utils.data.Subset(loader.MSTAR_Dataset(data_dir, name='eoc-1-t72-a64', is_train=True,
transform=data_transforms['train']),X_train)
val_dataset = torch.utils.data.Subset(loader.MSTAR_Dataset(data_dir, name='eoc-1-t72-a64', is_train=True,
transform=data_transforms['test']),X_val)
test_dataset = loader.MSTAR_Dataset(data_dir, name='eoc-1-t72-a64', is_train=False,
transform=data_transforms['test'])
# print('Number of Training Samples: {}'.format(len(train_dataset)))
# print('Number of Val Samples: {}'.format(len(val_dataset)))
# print('Number of Test Samples: {}'.format(len(test_dataset)))
else:
raise RuntimeError('{} Dataset not implemented'.format(Dataset))
if view_results:
labels = test_dataset.targets
classes = test_dataset.classes
#m is the number of samples taken from each class
m = 10
#In our paper, batch_size for:
#UCMerced - 210
#EuroSAT - 100
#MSTAR - 40
batch_size = m*len(classes)
sampler = samplers.MPerClassSampler(labels, m, batch_size, length_before_new_iter=100000)
#retain sampler = None for 'train' and 'val' data splits
dataset_sampler = {'train': None, 'test': sampler, 'val': None}
Network_parameters["batch_size"]["test"] = batch_size
else:
dataset_sampler = {'train': None, 'test': None, 'val': None}
#Create dataloaders
image_datasets = {'train': train_dataset, 'val': val_dataset, 'test': test_dataset}
collate_fn = {'train': collate_fn_train, 'val': collate_fn_test, 'test': collate_fn_test}
#Collate function is used only for EuroSAT and MSTAR
#Compatible input size for Kornia augmentation
if Dataset == "UCMerced" or Dataset == "MSTAR":
# Create training and test dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=Network_parameters['batch_size'][x],
shuffle=not(view_results),
num_workers=Network_parameters['num_workers'],
pin_memory=Network_parameters['pin_memory'],
sampler = dataset_sampler[x])
for x in ['train', 'val','test']}
else:
# Create training and test dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=Network_parameters['batch_size'][x],
shuffle=not(view_results),
num_workers=Network_parameters['num_workers'],
pin_memory=Network_parameters['pin_memory'],
collate_fn = collate_fn[x],
sampler = dataset_sampler[x])
for x in ['train', 'val','test']}
return dataloaders_dict