-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelTesting.py
100 lines (73 loc) · 5.14 KB
/
modelTesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import cv2
import mediapipe as mp
import pickle
import numpy as np
# Initializing the trained model
model_dict = pickle.load(open('./model.p', 'rb'))
model = model_dict['model']
# initializing the mediapipe API's for drawing landmarks and for preparing the hand landmark info
mpDrawing = mp.solutions.drawing_utils
mpDrawingStyles = mp.solutions.drawing_styles
mpHands = mp.solutions.hands
handsLandmarker = mpHands.Hands(static_image_mode = True, min_detection_confidence=0.3, max_num_hands=2) # we initialized the hand landmark detecter to detect max of 2 hands
cap = cv2.VideoCapture(0)
while True:
dataToBePredicted = [] # this list will store 2 lists for 2 hand landmarks [[x1, y1, x2, y2, ....x21, y21], [x1, y1, x2, y2, ....x21, y21]]. If 1 hand is detected then 1 list is stored
bboxData = [] # this list will contain [[min(x1 coords), min(y1 coords), max(x1 coords), max(y1 coords)], [min(x1 coords), min(y1 coords), max(x1 coords), max(y1 coords)]]
success, frame = cap.read()
H, W, _ = frame.shape
frameRGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
handsLandmarkerResults = handsLandmarker.process(frameRGB)
if handsLandmarkerResults.multi_hand_landmarks: # here we check if any hand is detected. if detected then we go inside if statement
for handLandmarkerResult in handsLandmarkerResults.multi_hand_landmarks: # this loop is to draw the visualization of all landmarks detected
mpDrawing.draw_landmarks(
frame, # image to draw
handLandmarkerResult, # model output
mpHands.HAND_CONNECTIONS, # hand connections
mpDrawingStyles.get_default_hand_landmarks_style(),
mpDrawingStyles.get_default_hand_connections_style())
for handLandmarkerResult in handsLandmarkerResults.multi_hand_landmarks: # if only 1 hand is detected then this loop execute for 1 time and if 2 detected then 2 times
imgLandmarkData = [] # we initialized this to store x, y coords of each landmark detected for single hand.
x_ = [] # we initiated this list to store all x coords of each landmark of single hand. so that we can get min, max values and append them to bboxData
y_ = [] # we initiated this list to store all y coords of each landmark of single hand. so that we can get min, max values and append them to bboxData
for landmarkIndex in range(len(handLandmarkerResult.landmark)): # for 1st hand detected, we take all x, y coords of all 21 landmarks
x = handLandmarkerResult.landmark[landmarkIndex].x
y = handLandmarkerResult.landmark[landmarkIndex].y
imgLandmarkData.append(x) # we store x, y coords of all 21 landmark points to a list. this list is used for prediction using trained model
imgLandmarkData.append(y)
x_.append(x)
y_.append(y)
dataToBePredicted.append(imgLandmarkData)
bboxData.append([min(x_), min(y_), max(x_), max(y_)])
if len(dataToBePredicted) > 1: # here if dataToBePredicted list length == 2 then we go in and draw 2 bounding boxes, predicted classes for 2 hands that are detected
x1A = int(bboxData[0][0] * W) - 15
y1A = int(bboxData[0][1] * H) - 15
x2A = int(bboxData[0][2] * W) - 15
y2A = int(bboxData[0][3] * H) - 15
x1B = int(bboxData[1][0] * W) - 15
y1B = int(bboxData[1][1] * H) - 15
x2B = int(bboxData[1][2] * W) - 15
y2B = int(bboxData[1][3] * H) - 15
predictionA = model.predict([np.array(dataToBePredicted[0])])
predictionAClass = predictionA[0]
predictionB = model.predict([np.array(dataToBePredicted[1])])
predictionBClass = predictionB[0]
cv2.rectangle(frame, (x1A, y1A), (x2A, y2A), (0, 0, 0), 1)
cv2.putText(frame, predictionAClass, (x1A, y1A - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x1B, y1B), (x2B, y2B), (0, 0, 0), 1)
cv2.putText(frame, predictionBClass, (x1B, y1B - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
if len(dataToBePredicted) == 1: # here if dataToBePredicted list length == 1 then we go in and draw 1 bounding boxes, predicted class for 1 hand1 that is detected
x1A = int(bboxData[0][0] * W) - 8
y1A = int(bboxData[0][1] * H) - 8
x2A = int(bboxData[0][2] * W) + 8
y2A = int(bboxData[0][3] * H) + 20
predictionA = model.predict([np.array(dataToBePredicted[0])])
predictionAClass = predictionA[0]
cv2.rectangle(frame, (x1A, y1A), (x2A, y2A), (0, 0, 0), 1)
cv2.putText(frame, predictionAClass, (x1A, y1A - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('frame', frame)
k = cv2.waitKey(10)
if k==27: # we break the prediction process if user hits Esc button
break
cap.release()
cv2.destroyAllWindows()