-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgameoflife.p8
109 lines (92 loc) · 2.17 KB
/
gameoflife.p8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
pico-8 cartridge // http://www.pico-8.com
version 29
__lua__
-- colorful life
-- by abbabon
grid={}
n=32
cols=n
rows=n
res=128/n
function create_grid(randomize)
newgrid={}
for x=1,cols do
newgrid[x]={}
for y=1,rows do
if randomize then
newgrid[x][y]=flr(rnd(2))
else
newgrid[x][y]=0
end
end
end
return newgrid
end
function count_neighbours(grid,x,y)
local sum =0
for i=-1,1 do
for j=-1,1 do
local row = x+i
local col = y+j
if (row < 1) then row = rows end
if (row > rows) then row = 1 end
if (col < 1) then col = cols end
if (col > cols) then col = 1 end
if grid[row][col] >= 1 then
sum += 1
end
end
end -- end loops
if grid[x][y] >= 1 then
sum -= 1
end
return sum
end
function _init()
grid = create_grid(true)
end
function update_cells ()
local new_grid = create_grid(false)
for x=1,rows do
for y=1,cols do
local n = count_neighbours(grid,x,y)
local alive = grid[x][y] >= 1
if alive then
if n < 2 or n > 3 then
new_grid[x][y] = 0
else
new_grid[x][y] = grid[x][y]+1
end
end
if not alive and n == 3 then
new_grid[x][y] = 1
end
end
end
grid = newgrid
end
function _draw()
cls()
camera(res, res)
for x=1,rows do
for y=1,cols do
local color = 0
rectfill(
x*res,
y*res,
x*res+res,
y*res+res,
grid[x][y]
)
end
end
flip()
update_cells()
end
__gfx__
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00700700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00077000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00077000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00700700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000