-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprover.rs
337 lines (287 loc) · 9.79 KB
/
prover.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use crate::ot::mozzarella::cache::prover::CachedProver;
use crate::ot::mozzarella::lpn::LLCode;
use crate::ot::mozzarella::utils::log2;
use crate::ot::mozzarella::{MozzarellaProver, MozzarellaProverStats};
use crate::Error;
use rand::distributions::{Distribution, Standard};
use rand::{Rng, SeedableRng};
use rayon::prelude::*;
use scuttlebutt::channel::{Receivable, Sendable};
use scuttlebutt::ring::Ring;
use scuttlebutt::{AbstractChannel, AesRng, Block};
use serde::Serialize;
use std::time::{Duration, Instant};
#[allow(non_snake_case)]
pub struct Prover<'a, RingT>
where
RingT: Ring + Receivable,
Standard: Distribution<RingT>,
for<'b> &'b RingT: Sendable,
{
k: usize,
statsec: usize,
mozProver: MozzarellaProver<'a, RingT>,
stats: ProverStats,
is_init_done: bool,
}
#[derive(Copy, Clone, Debug, Default, Serialize)]
pub struct ProverStats {
pub mozz_init: Duration,
pub linear_comb_time: Duration,
pub mozzarella_stats: MozzarellaProverStats,
}
#[allow(non_snake_case)]
impl<'a, RingT: Ring> Prover<'a, RingT>
where
RingT: Ring + Receivable,
Standard: Distribution<RingT>,
for<'b> &'b RingT: Sendable,
{
pub fn new(
k: usize,
statsec: usize,
cache: CachedProver<RingT>,
code: &'a LLCode<RingT>,
base_vole_len: usize,
num_sp_voles: usize,
sp_vole_len: usize,
) -> Self {
assert!(RingT::BIT_LENGTH >= k + 2 * statsec + log2(statsec));
Self {
k,
statsec,
mozProver: MozzarellaProver::<RingT>::new(
cache,
&code,
base_vole_len,
num_sp_voles,
sp_vole_len,
false,
),
stats: Default::default(),
is_init_done: false,
}
}
pub fn init<C: AbstractChannel>(&mut self, channel: &mut C) -> Result<(), Error> {
let t_start = Instant::now();
self.mozProver.init(channel)?;
self.stats.mozz_init = t_start.elapsed();
self.is_init_done = true;
Ok(())
}
pub fn apply_to_mozzarella_prover<ResT, F: FnOnce(&mut MozzarellaProver<RingT>) -> ResT>(
&mut self,
f: F,
) -> ResT {
f(&mut self.mozProver)
}
pub fn get_stats(&mut self) -> ProverStats {
self.stats.mozzarella_stats = self.mozProver.get_stats();
self.stats
}
pub fn get_run_time_init(&self) -> Duration {
self.stats.mozz_init
}
// The mozVerifier already handles if there aren't any left, in which case it runs extend
pub fn random<C: AbstractChannel>(&mut self, channel: &mut C) -> Result<(RingT, RingT), Error> {
let (x, z) = self.mozProver.vole(channel)?;
return Ok((x, z));
}
pub fn random_batch<C: AbstractChannel>(
&mut self,
channel: &mut C,
n: usize,
) -> Result<(Vec<RingT>, Vec<RingT>), Error> {
self.mozProver.extend(channel, n)
}
pub fn input<C: AbstractChannel>(
&mut self,
channel: &mut C,
x: RingT,
) -> Result<(RingT, RingT), Error> {
//println!("I'm here");
let (r, z) = self.random(channel)?;
//println!("I'm here now");
let y = x - r;
channel.send(&y)?;
Ok((x, z))
}
pub fn input_batch<C: AbstractChannel>(
&mut self,
channel: &mut C,
inp: Vec<RingT>,
) -> Result<(Vec<RingT>, Vec<RingT>), Error> {
let n = inp.len();
let (mut r, r_mac) = self.random_batch(channel, n)?;
for i in 0..n {
r[i] = inp[i] - r[i];
}
channel.send(r.as_slice())?;
Ok((inp, r_mac))
}
pub fn add(
&mut self,
(alpha, alpha_mac): (RingT, RingT),
(beta, beta_mac): (RingT, RingT),
) -> Result<(RingT, RingT), Error> {
Ok(((alpha + beta), (alpha_mac + beta_mac)))
}
pub fn add_batch(
&mut self,
(alpha, alpha_mac): (&[RingT], &[RingT]),
(beta, beta_mac): (&[RingT], &[RingT]),
) -> (Vec<RingT>, Vec<RingT>) {
let n = alpha.len();
assert_eq!(alpha_mac.len(), n);
assert_eq!(beta.len(), n);
assert_eq!(beta_mac.len(), n);
let mut out = vec![RingT::default(); n];
let mut out_mac = vec![RingT::default(); n];
for i in 0..n {
out[i] = alpha[i] + beta[i];
out_mac[i] = alpha_mac[i] + beta_mac[i];
}
(out, out_mac)
}
pub fn multiply<C: AbstractChannel>(
&mut self,
channel: &mut C,
(alpha, alpha_mac): (RingT, RingT),
(beta, beta_mac): (RingT, RingT),
) -> Result<((RingT, RingT), (RingT, RingT), (RingT, RingT)), Error> {
let z = alpha * beta;
let (z, z_mac) = self.input(channel, z)?;
Ok(((alpha, alpha_mac), (beta, beta_mac), (z, z_mac)))
}
pub fn multiply_batch<C: AbstractChannel>(
&mut self,
channel: &mut C,
(alpha, alpha_mac): (&[RingT], &[RingT]),
(beta, beta_mac): (&[RingT], &[RingT]),
) -> Result<(Vec<RingT>, Vec<RingT>), Error> {
let n = alpha.len();
assert_eq!(alpha_mac.len(), n);
assert_eq!(beta.len(), n);
assert_eq!(beta_mac.len(), n);
let mut out = vec![RingT::default(); n];
for i in 0..n {
out[i] = alpha[i] * beta[i];
}
self.input_batch(channel, out)
}
pub fn check_zero<C: AbstractChannel>() {
// todo: C is supposed to be straight up public, so we need to subtract A*B from C and check
// if it's 0
}
pub fn check_multiply_batch<C: AbstractChannel>(
&mut self,
channel: &mut C,
(alphas, alpha_macs): (&[RingT], &[RingT]),
(betas, beta_macs): (&[RingT], &[RingT]),
(gammas, gamma_macs): (&[RingT], &[RingT]),
// multi_thread: bool,
// chunk_size: usize,
) -> Result<(), Error> {
let n = alphas.len();
assert_eq!(n, betas.len());
assert_eq!(n, gammas.len());
assert_eq!(n, alpha_macs.len());
assert_eq!(n, beta_macs.len());
assert_eq!(n, gamma_macs.len());
let mut U = RingT::ZERO;
let mut V = RingT::ZERO;
let chi_seed: Block = channel.receive().unwrap();
let mut seeded_rng = AesRng::from_seed(chi_seed);
let chis: Vec<RingT> = (0..n).map(|_| seeded_rng.gen()).collect();
let t_start = Instant::now();
for i in 0..n {
let chi_i = chis[i];
let w_alpha = alphas[i];
let m_alpha = alpha_macs[i];
let w_beta = betas[i];
let m_beta = beta_macs[i];
let m_gamma = gamma_macs[i];
let a0i = m_alpha * m_beta;
let a1i = (w_beta * m_alpha) + (w_alpha * m_beta) - m_gamma;
U += chi_i * a0i;
V += chi_i * a1i;
}
self.stats.linear_comb_time = t_start.elapsed();
let (A1, A0) = self.random(channel)?;
U += A0;
V += A1;
channel.send(&U)?;
channel.send(&V)?;
Ok(())
}
pub fn check_multiply<C: AbstractChannel>(
&mut self,
channel: &mut C,
triples: &mut [((RingT, RingT), (RingT, RingT), (RingT, RingT))],
multi_thread: bool,
chunk_size: usize,
) -> Result<(), Error> {
let mut U = RingT::default();
let mut V = RingT::default();
let seed: Block = channel.receive().unwrap();
let mut seeded_rng = AesRng::from_seed(seed);
let check_time = Instant::now();
if multi_thread {
let t_start = Instant::now();
let (U_out, V_out) = triples
.par_chunks_exact_mut(chunk_size)
.map(|x| {
let mut rng = AesRng::from_seed(Block::default());
let (wl_U, wl_V): (RingT, RingT) = x.into_iter().fold(
(RingT::default(), RingT::default()),
|(tmp_U, tmp_V), (alpha, beta, gamma)| {
let chi = rng.gen::<RingT>();
let u = (alpha.1 * beta.1) * chi;
let v = ((beta.0 * alpha.1) + (alpha.0 * beta.1) - gamma.1) * chi;
(tmp_U + u, tmp_V + v)
},
);
(wl_U, wl_V)
})
.fold(
|| (RingT::default(), RingT::default()),
|(U, V), (tmp_u, tmp_v)| (U + tmp_u, V + tmp_v),
)
.reduce(
|| (RingT::default(), RingT::default()),
|(tmp_U, tmp_V), (alpha, beta)| {
let u = alpha;
let v = beta;
(tmp_U + u, tmp_V + v)
},
);
println!("Time elapsed mul: {}", t_start.elapsed().as_millis());
U = U_out;
V = V_out;
} else {
let t_start = Instant::now();
for cur in triples {
let chi: RingT = seeded_rng.gen::<RingT>();
// 0 is x (w), 1 is z (m)
let w_alpha = cur.0 .0;
let m_alpha = cur.0 .1;
let w_beta = cur.1 .0;
let m_beta = cur.1 .1;
// let w_gamma = cur.2.0;
let m_gamma = cur.2 .1;
let a0i = m_alpha * m_beta;
let a1i = (w_beta * m_alpha) + (w_alpha * m_beta) - m_gamma;
U += chi * a0i;
V += chi * a1i;
}
println!("Time elapsed mul: {}", t_start.elapsed().as_millis());
}
self.stats.linear_comb_time = check_time.elapsed();
let (A1, A0) = self.random(channel)?;
U += A0;
V += A1;
channel.send(&U)?;
channel.send(&V)?;
Ok(())
}
}