-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathazmp_airTemp_fromExcel.py
239 lines (193 loc) · 9.45 KB
/
azmp_airTemp_fromExcel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
'''
AZMP reporting - Air temperature from Colbourne's Excel sheets
(script ran in /home/cyrf0006/AZMP/annual_meetings/2019)
Using data from (see ~/research/PeopleStuff/ColbourneStuff):
AZMP_AIR_TEMP_COMPOSITE_2018.xlsx
Fred built:
AZMP_AIR_TEMP_COMPOSITE_BONAVISTA.xlsx
AZMP_AIR_TEMP_COMPOSITE_CARTWRIGHT.xlsx
AZMP_AIR_TEMP_COMPOSITE_IQALUIT.xlsx
AZMP_AIR_TEMP_COMPOSITE_NUUK.xlsx
AZMP_AIR_TEMP_COMPOSITE_STJOHNS.xlsx
that are loaded and plotted here.
Ideally, I would use directly data from EC Homogenized Temperature: ftp://ccrp.tor.ec.gc.ca/pub/AHCCD/Homog_monthly_mean_temp.zip
but since some data are delayed or unavailable for NL stations (NUUK is in Greenland, Bonavista N/A and Cartwright stops in 2015), Eugne used to got them from :
http://climate.weather.gc.ca/prods_servs/cdn_climate_summary_e.html
http://climate.weather.gc.ca/prods_servs/cdn_climate_summary_report_e.html?intYear=2018&intMonth=2&prov=NL&dataFormat=csv&btnSubmit=Download+data
and update the Excel files.
Eventually, I could find a way to update directly from server (see azmp_airTemp.py).
I took NUUK temperature here:
https://www.dmi.dk/publikationer/
https://www.dmi.dk/vejrarkiv/
using file 4250_2014_2018.csv
( this one ends in 2013: https://crudata.uea.ac.uk/cru/data/greenland/nuuk.dat)
I generated historical data from here (see azmp_dmi_nuukAirT.py):
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D11105, doi:10.1029/2005JD006810, 2006
https://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2018/DMIRep18-05.zip
https://www.dmi.dk/publikationer/
** Note that NUUK Air temperature is also provided in ices/iroc by Boris**
[email protected] - February 2019
'''
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import datetime
import matplotlib.dates as mdates
from scipy.interpolate import griddata
import os
# Adjust fontsize/weight
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 14}
plt.rc('font', **font)
clim_year = [1981, 2010]
current_year = 2019
## ---- Prepare the data ---- ##
# load from Excel sheets
df_BB = pd.read_excel('/home/cyrf0006/research/PeopleStuff/ColbourneStuff/AZMP_AIR_TEMP_COMPOSITE_BONAVISTA.xlsx', header=0)
df_CA = pd.read_excel('/home/cyrf0006/research/PeopleStuff/ColbourneStuff/AZMP_AIR_TEMP_COMPOSITE_CARTWRIGHT.xlsx', header=0)
df_IQ = pd.read_excel('/home/cyrf0006/research/PeopleStuff/ColbourneStuff/AZMP_AIR_TEMP_COMPOSITE_IQALUIT.xlsx', header=0)
df_NK = pd.read_excel('/home/cyrf0006/research/PeopleStuff/ColbourneStuff/AZMP_AIR_TEMP_COMPOSITE_NUUK.xlsx', header=0)
df_SJ = pd.read_excel('/home/cyrf0006/research/PeopleStuff/ColbourneStuff/AZMP_AIR_TEMP_COMPOSITE_STJOHNS.xlsx', header=0)
# Rename columns
col_names = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
df_BB.columns = col_names
df_CA.columns = col_names
df_IQ.columns = col_names
df_NK.columns = col_names
df_SJ.columns = col_names
# Set index Year
df_BB = df_BB.set_index('Year', drop=True)
df_CA = df_CA.set_index('Year', drop=True)
df_IQ = df_IQ.set_index('Year', drop=True)
df_NK = df_NK.set_index('Year', drop=True)
df_SJ = df_SJ.set_index('Year', drop=True)
# Stack months under Years (pretty cool!)
df_BB = df_BB.stack()
df_CA = df_CA.stack()
df_IQ = df_IQ.stack()
df_NK = df_NK.stack()
df_SJ = df_SJ.stack()
# Transform to a series with values based the 15th of each month (had to convert years to string)
df_BB.index = pd.to_datetime('15-' + df_BB.index.get_level_values(1) + '-' + df_BB.index.get_level_values(0).values.astype(np.str))
df_CA.index = pd.to_datetime('15-' + df_CA.index.get_level_values(1) + '-' + df_CA.index.get_level_values(0).values.astype(np.str))
df_IQ.index = pd.to_datetime('15-' + df_IQ.index.get_level_values(1) + '-' + df_IQ.index.get_level_values(0).values.astype(np.str))
df_NK.index = pd.to_datetime('15-' + df_NK.index.get_level_values(1) + '-' + df_NK.index.get_level_values(0).values.astype(np.str))
df_SJ.index = pd.to_datetime('15-' + df_SJ.index.get_level_values(1) + '-' + df_SJ.index.get_level_values(0).values.astype(np.str))
# NEW FROM 2019 (replace Excel from DMI data):
df_NUUK = pd.read_pickle('Nuuk_air_temp.pkl')
# Concatenate all timeseries
#df = pd.concat([df_SJ, df_BB, df_CA, df_IQ, df_NUUK], axis=1)
#df.columns = ['StJohns', 'Bonavista', 'Cartwright','Iqaluit', 'Nuuk']
df = pd.concat([df_NUUK, df_IQ, df_CA, df_BB, df_SJ], axis=1)
df.columns = ['Nuuk', 'Iqaluit', 'Cartwright', 'Bonavista', 'StJohns']
## ---- Monthly anomalies for current year ---- ##
df_clim_period = df[(df.index.year>=clim_year[0]) & (df.index.year<=clim_year[1])]
df_monthly_stack = df_clim_period.groupby([(df_clim_period.index.year),(df_clim_period.index.month)]).mean()
df_monthly_clim = df_monthly_stack.mean(level=1)
df_monthly_std = df_monthly_stack.std(level=1)
df_current_year = df[df.index.year==current_year]
year_index = df_current_year.index # backup index
df_current_year.index=df_monthly_std.index # reset index
anom = df_current_year - df_monthly_clim
std_anom = (df_current_year - df_monthly_clim)/df_monthly_std
#std_anom.index = year_index.month # replace index
std_anom.index = year_index.strftime('%b') # replace index (by text)
anom.index = year_index.strftime('%b') # replace index (by text)
## ---- Annual anomalies ---- ##
df_annual = df.resample('As').mean()
df_annual = df_annual[df_annual.index.year>=1950]
clim = df_annual[(df_annual.index.year>=clim_year[0]) & (df_annual.index.year<=clim_year[1])].mean()
std = df_annual[(df_annual.index.year>=clim_year[0]) & (df_annual.index.year<=clim_year[1])].std()
anom_annual = (df_annual - clim)
std_anom_annual = (df_annual - clim)/std
std_anom_annual.index = std_anom_annual.index.year
# Save for scorecards
std_anom_annual.to_pickle('airT_std_anom.pkl')
df.to_pickle('airT_monthly.pkl')
## ---- plot monthly ---- ##
#std_anom.plot(kind='bar', stacked=True, cmap='YlGn')
#plt.grid('on')
#plt.show()
ax = anom.plot(kind='bar', stacked=True, cmap='YlGn')
plt.grid('on')
ax.set_ylabel(r'[$^{\circ}$C]')
ax.set_title(np.str(current_year) + ' Air temperature anomalies')
#ax.legend(loc='upper center')
plt.ylim([-6, 14])
fig = ax.get_figure()
fig.set_size_inches(w=9,h=6)
fig_name = 'air_temp_2019.png'
fig.savefig(fig_name, dpi=300)
os.system('convert -trim ' + fig_name + ' ' + fig_name)
# Save French Figure
french_months = ['J', 'F', 'M', 'A', 'M', 'J', 'J', 'A', 'S', 'O', 'N', 'D']
ax.set_title(' Anomalies des températures de l\'air - ' + np.str(current_year))
ax.set_xticklabels(french_months, rotation='horizontal')
fig_name = 'air_temp_2019_FR.png'
fig.savefig(fig_name, dpi=300)
os.system('convert -trim ' + fig_name + ' ' + fig_name)
## ---- plot annual ---- ##
n = 5 # xtick every n years
ax = std_anom_annual.plot(kind='bar', stacked=True, cmap='YlGn')
ticks = ax.xaxis.get_ticklocs()
ticklabels = [l.get_text() for l in ax.xaxis.get_ticklabels()]
ax.xaxis.set_ticks(ticks[::n])
ax.xaxis.set_ticklabels(ticklabels[::n])
plt.grid('on')
ax.set_ylabel(r'Standardized anomaly')
ax.set_title('Annual air temperature anomalies')
fig = ax.get_figure()
fig.set_size_inches(w=12,h=8)
fig_name = 'air_temp_anom.png'
fig.savefig(fig_name, dpi=300)
os.system('convert -trim ' + fig_name + ' ' + fig_name)
# Save in French
ax.set_ylabel(r'Anomalie normalisée')
ax.set_title('Anomalies des températures de l\'air')
fig_name = 'air_temp_anom_FR.png'
fig.savefig(fig_name, dpi=300)
os.system('convert -trim ' + fig_name + ' ' + fig_name)
keyboard
## ---- Tried to overlay NAO, but did not work. I give up for now. ---- ##
df_winter = pd.read_pickle('winterNAO_1951-2019.pkl')
df_roll = df_winter.rolling(window=5, center=True).mean()
df_roll = df_roll.rename(columns={"Value": "Winter NAO"})
df = pd.concat([std_anom_annual, df_roll])
df.index.name = 'year'
df.reset_index(inplace=True)
df['year'] = df['year'].astype("string") # Let them be strings!
fig, ax = plt.subplots(figsize = (15,8))
df.plot(x = 'year', y = ['Bonavista','Cartwright'], kind = 'bar', ax = ax)
df.plot(x = 'year', y = ['Winter NAO'], kind = 'line', ax = ax)
ax = df.plot(x = 'year', y = ['Bonavista','Cartwright'], kind = 'bar')#x='month', linestyle='-', marker='o')
df.plot(x='year', y='Winter NAO', kind='line', ax=ax)
fig, ax = plt.subplots(figsize = (15,8))
#std_anom_annual.plot(kind='bar', stacked=True, cmap='YlGn', ax=ax)
#df_roll.plot(kind='line', color='k', linewidth=4, ax=ax)
df.plot(y = ['Winter NAO'], kind = 'line', ax = ax)
df.plot(y= ['Bonavista','Cartwright'], kind = 'bar', ax = ax)
ticks = ax.xaxis.get_ticklocs()
ticklabels = [l.get_text() for l in ax.xaxis.get_ticklabels()]
ax.xaxis.set_ticks(ticks[::n])
ax.xaxis.set_ticklabels(ticklabels[::n])
plt.grid('on')
ax.set_ylabel(r'Standardized anomaly')
ax.set_title('Annual air temperature anomalies')
fig = ax.get_figure()
fig.set_size_inches(w=12,h=8)
fig_name = 'air_temp_anom_NAO.png'
#plt.annotate('data source: www.ncdc.noaa.gov/teleconnections/', xy=(.58, .01), xycoords='figure fraction', annotation_clip=False, FontSize=12)
fig.savefig(fig_name, dpi=300)
os.system('convert -trim ' + fig_name + ' ' + fig_name)
## Test only with summer data
df_summer = df[(df.index.month >= 6) & (df.index.month<=9)]
df_annual = df_summer.resample('As').mean()
df_annual = df_annual[df_annual.index.year>=1950]
clim = df_annual[(df_annual.index.year>=clim_year[0]) & (df_annual.index.year<=clim_year[1])].mean()
std = df_annual[(df_annual.index.year>=clim_year[0]) & (df_annual.index.year<=clim_year[1])].std()
std_anom_annual = (df_annual - clim)/std
std_anom_annual.index = std_anom_annual.index.year
ax = std_anom_annual['Nuuk'].plot()
std_anom_annual['Iqaluit'].plot(ax=ax)
plt.show()