-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathMNISTExperiment.py
263 lines (228 loc) · 13 KB
/
MNISTExperiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from models import UMNNMAFFlow
import torch
from lib import dataloader as dl
import lib as transform
import lib.utils as utils
import numpy as np
import os
import pickle
from timeit import default_timer as timer
import torchvision
from tensorboardX import SummaryWriter
writer = SummaryWriter()
def train_mnist(dataset, load=None, gen_image=False, save=None, temperature=.5, real_images=False, nb_iter=5,
nb_steps=50, solver="CC", hidden_embeding=[1024, 1024, 1024], hidden_derivative=[100, 50, 50, 50, 50],
embeding_size=30, nb_images=5, conditionnal=False, nb_flow=5, lr=1e-3, weight_decay=1e-2,
nb_epoch=500, L=1., batch_size=100):
cuda = 0 if torch.cuda.is_available() else -1
device = "cuda:0" if torch.cuda.is_available() else "cpu"
save_name = dataset + "/" + str(nb_steps) if save is None else save
if save is not None or gen_image:
if not (os.path.isdir(save_name)):
os.makedirs(save_name)
logger = utils.get_logger(logpath=os.path.join(save_name, 'logs'), filepath=os.path.abspath(__file__),
saving=save is not None)
cond_in = 10 if conditionnal else 0
nb_in = 28**2
model = UMNNMAFFlow(nb_flow=nb_flow, nb_in=nb_in, hidden_derivative=hidden_derivative,
hidden_embedding=hidden_embeding, embedding_s=embeding_size, nb_steps=nb_steps, device=device,
solver=solver, cond_in=cond_in).to(device)
if save is not None:
with open(save + "/model.txt", "w") as f:
f.write(str(model))
opt = torch.optim.Adam(model.parameters(), lr, weight_decay=weight_decay)
if nb_steps > 0:
max_forward = min(int(3000/(nb_steps/nb_steps * nb_flow * hidden_derivative[0]/100)*784/nb_in), batch_size)
logger.info("Max forward: %d" % max_forward)
random_steps = nb_steps <= 0
if conditionnal:
train_loader, valid_loader, test_loader = dl.dataloader(dataset, batch_size, cuda=cuda, conditionnal=True)
else:
train_loader, valid_loader, test_loader = dl.dataloader(dataset, batch_size, cuda=cuda)
if load is not None:
logger.info("Loading model")
model.load_state_dict(torch.load(load + '/model.pt'))
model.eval()
with torch.no_grad():
# Compute Test loss
i = 0
ll_test = 0.
bpp_avg = 0.
start = end = timer()
for batch_idx, (cur_x, target) in enumerate(test_loader):
if conditionnal:
bpp, ll_tmp, z_est = 0, 0, 0
for j in range(10):
y = target.view(-1, 1)*0 + j
y_one_hot = torch.zeros(y.shape[0], 10).scatter(1, y, 1)
context = y_one_hot.to(device)
bpp_i, ll_tmp_i, z_est_i = model.compute_bpp(cur_x.view(-1, nb_in).to(device), context=context)
bpp += bpp_i/10
ll_tmp += ll_tmp_i/10
else:
context = None
bpp, ll_tmp, z_est = model.compute_bpp(cur_x.view(-1, nb_in).to(device))
i += 1
ll_test -= ll_tmp.mean()
bpp_avg += bpp.mean()
if i == 5 and nb_epoch > 0:
break
end = timer()
logger.info("{:d} :Test loss: {:4f} - BPP: {:4f} - Elapsed time per epoch {:4f}".format(
i, -ll_test.detach().cpu().item()/i, -bpp_avg.detach().cpu().item() / i, end - start))
logger.info("{:d} :Test loss: {:4f} - BPP: {:4f} - Elapsed time per epoch {:4f}".format(
i, -ll_test.detach().cpu().item() / i, -bpp_avg.detach().cpu().item() / i, end - start))
nb_sample = nb_images
# Generate and save images
if gen_image:
if real_images:
logger.info("Regenerate real images")
x, y = next(iter(test_loader))
y = y.view(-1, 1)
context = torch.zeros(y.shape[0], 10).scatter(1, y, 1).to(device) if conditionnal else None
nb_sample = 100
z = torch.distributions.Normal(0., 1.).sample(torch.Size([nb_sample, nb_in])).to(
device) * torch.arange(0.1, 1.1, .1).unsqueeze(0).expand(int(nb_sample / 10), -1).transpose(0,
1) \
.contiguous().view(-1).unsqueeze(1).expand(-1, 784).to(device)
else:
logger.info("Generate random images")
z = torch.distributions.Normal(0., 1.).sample(torch.Size([nb_sample, nb_in])).to(
device) * temperature
z_true = z[:nb_sample, :]
if conditionnal:
if real_images:
nb_sample = 100
z_true = torch.distributions.Normal(0., 1.).sample(torch.Size([nb_sample, nb_in])).to(
device) * torch.arange(0.1, 1.1, .1).unsqueeze(0).expand(int(nb_sample/10), -1).transpose(0, 1)\
.contiguous().view(-1).unsqueeze(1).expand(-1, 784).to(device)
digit = (torch.arange(nb_sample) % 10).float().view(-1, 1)
else:
digit = (torch.arange(nb_sample) % 10).float().view(-1, 1)
logger.info("Creation of: " + str(digit))
context = torch.zeros(digit.shape[0], 10).scatter(1, digit.long(), 1).to(device)
x_est = model.invert(z_true, nb_iter, context=context)
bpp, ll, _ = model.compute_bpp(x_est, context=context)
logger.info("Bpp of generated data is: {:4f}".format(bpp.mean().item()))
logger.info("ll of generated data is: {:4f}".format(ll.mean().item()))
x = transform.logit_back(x_est.detach().cpu(), 1e-6).view(x_est.shape[0], 1, 28, 28)
torchvision.utils.save_image(x, save_name + '/' + str(temperature) + 'images.png', nrow=10,
padding=1)
exit()
with open(load + '/losses.pkl', 'rb') as f:
losses_train, losses_test = pickle.load(f)
cur_epoch = len(losses_test)
else:
losses_train = []
losses_test = []
cur_epoch = 0
for epoch in range(cur_epoch, cur_epoch + nb_epoch):
ll_tot = 0
i = 0
start = timer()
for batch_idx, (cur_x, target) in enumerate(train_loader):
if conditionnal:
y = target.view(-1, 1)
y_one_hot = torch.zeros(y.shape[0], 10).scatter(1, y, 1)
context = y_one_hot.to(device)
else:
cur_x = cur_x.view(-1, nb_in).to(device)
context = None
if random_steps:
nb_steps = np.random.randint(5, 50)*2
max_forward = min(int(1500 / nb_steps), batch_size)
model.set_steps_nb(nb_steps)
cur_x = cur_x.to(device)
ll = 0.
opt.zero_grad()
for cur_su_batch in range(0, batch_size, max_forward):
ll, z = model.compute_ll(cur_x.view(-1, nb_in)[cur_su_batch:cur_su_batch+max_forward], context=context)
ll = -ll.mean()/(batch_size/z.shape[0])
ll.backward()
ll_tot += ll.detach()
opt.step()
if L > 0:
model.forceLipshitz(L)
i += 1
if i % 10 == 0:
time_tot = timer()
logger.info("{:d} cur_loss - {:4f} - Average time elapsed per batch {:4f}".format(
i, ll_tot.item() / i, (time_tot - start) / i))
if save:
torch.save(model.state_dict(), save_name + '/model.pt')
ll_tot /= i
losses_train.append(ll_tot.detach().cpu())
with torch.no_grad():
# Generate and save images
if gen_image and epoch % 10 == 0:
z = torch.distributions.Normal(0., 1.).sample(torch.Size([nb_images, nb_in])).to(device)*temperature
if conditionnal:
digit = (torch.arange(nb_sample) % 10).float().view(-1, 1)
logger.info("Creation of: " + str(digit))
context = torch.zeros(digit.shape[0], 10).scatter(1, digit.long(), 1).to(device)
x = model.invert(z, nb_iter, context=context)
logger.info("Inversion error: {:4f}".format(torch.abs(z - model.forward(x, context=context)).mean().item()))
x = x.detach().cpu()
x = transform.logit_back(x, 1e-6).view(x.shape[0], 1, 28, 28)
writer.add_image('data/images', torchvision.utils.make_grid(x, nrow=4), epoch)
torchvision.utils.save_image(x, save_name + '/epoch_{:04d}.png'.format(epoch), nrow=4, padding=1)
model.set_steps_nb(nb_steps)
# Compute Test loss
i = 0
ll_test = 0.
for batch_idx, (cur_x, target) in enumerate(valid_loader):
if conditionnal:
y = target.view(-1, 1)
y_one_hot = torch.zeros(y.shape[0], 10).scatter(1, y, 1)
context = y_one_hot.to(device)
else:
context = None
ll_tmp, _ = model.compute_ll(cur_x.view(-1, nb_in).to(device), context=context)
i += 1
ll_test -= ll_tmp.mean()
ll_test /= i
losses_test.append(ll_test.detach().cpu())
writer.add_scalars('data/' + save_name + "/losses", {"Valid": ll_test.detach().cpu().item(),
"Train": ll_tot.detach().cpu().item()}, epoch)
# Save losses
if save:
if epoch % 5 == 0:
if not (os.path.isdir(save_name + '/models')):
os.makedirs(save_name + '/models')
torch.save(model.state_dict(), save_name + '/models/model_{:04d}.pt'.format(epoch))
with open(save_name + '/losses.pkl', 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([losses_train, losses_test], f)
logger.info("epoch: {:d} - Train loss: {:4f} - Test loss: {:4f} - L: {:4f}".format(
epoch, ll_tot.detach().cpu().item(), ll_test.detach().cpu().item(), model.computeLipshitz(10).detach()))
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument("-load", default=None, help="where to load")
parser.add_argument("-gen", default=False, action="store_true", help="where to store results")
parser.add_argument("-save", default=None, help="where to store results")
parser.add_argument("-steps", default=50, type=int, help="number of integration steps")
parser.add_argument("-temperature", default=.5, type=float, help="Temperature for sample")
parser.add_argument("-solver", default="CC", help="Temperature for sample")
parser.add_argument("-hidden_embedding", nargs='+', type=int, default=[1024, 1024, 1024], help="Nb neurons for emebding")
parser.add_argument("-hidden_derivative", nargs='+', type=int, default=[100, 50, 50, 50, 50], help="Nb neurons for derivative")
parser.add_argument("-embedding_size", type=int, default=30, help="Size of embedding part")
parser.add_argument("-real_images", type=bool, default=False, help="Generate real images")
parser.add_argument("-dataset", type=str, default="MNIST", help="Dataset")
parser.add_argument("-nb_images", type=int, default=5, help="Number of images to be generated")
parser.add_argument("-conditionnal", type=bool, default=False, help="Conditionning on class or not")
parser.add_argument("-nb_flow", type=int, default=5, help="Number of nets in the flow")
parser.add_argument("-weight_decay", type=float, default=1e-2, help="Weight Decay")
parser.add_argument("-lr", type=float, default=1e-3, help="Learning rate")
parser.add_argument("-nb_epoch", type=int, default=500, help="Number of epoch")
parser.add_argument("-nb_iter", type=int, default=500, help="Number of iter for inversion")
parser.add_argument("-Lipshitz", type=float, default=0, help="Lipshitz constant max of linear layer in derivative net")
parser.add_argument("-b_size", type=int, default=100, help="Number of samples per batch")
args = parser.parse_args()
dataset = args.dataset
dir_save = None if args.save is None else dataset + "/" + args.save
dir_load = None if args.load is None else dataset + "/" + args.load
train_mnist(dataset=dataset, load=dir_load, gen_image=args.gen, save=dir_save, nb_steps=args.steps,
temperature=args.temperature, solver=args.solver, hidden_embeding=args.hidden_embedding,
hidden_derivative=args.hidden_derivative, real_images=args.real_images, nb_images=args.nb_images,
conditionnal=args.conditionnal, nb_flow=args.nb_flow, weight_decay=args.weight_decay, lr=args.lr,
nb_epoch=args.nb_epoch, L=args.Lipshitz, nb_iter=args.nb_iter,
batch_size=args.b_size)