-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathASF_Tools.LogDiff.pyt.xml
591 lines (565 loc) · 52 KB
/
ASF_Tools.LogDiff.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20191114</CreaDate><CreaTime>15052200</CreaTime><ArcGISFormat>1.0</ArcGISFormat><ArcGISstyle>North American Profile of ISO19115 2003</ArcGISstyle><SyncOnce>TRUE</SyncOnce><ModDate>20201002</ModDate><ModTime>14504300</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>NAP</ArcGISProfile><DataProperties><itemProps><imsContentType export="False"/></itemProps></DataProperties></Esri><tool name="LogDiff" displayname="Calculate Log Difference" toolboxalias="ASF Tools" xmlns=""><arcToolboxHelpPath>c:\program files\arcgis\pro\Resources\Help\gp</arcToolboxHelpPath><parameters><param name="date2" displayname="Comparison raster (i.e. most recent SAR acquisition)" type="Required" direction="Input" datatype="Raster Dataset" expression="date2"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Navigate to the raster that will be compared to the reference raster, or enter the full path by typing or pasting. You can also drag and drop a raster from the Catalog window.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN>For comparisons through time, select the most recent raster as the comparison raster.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN>ArcGIS Pro tip: Select the raster file as the input, not Band_1. While Pro allows you to navigate to the band level, it is not a valid input for this tool.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="date1" displayname="Reference raster (i.e. oldest SAR acquisition)" type="Required" direction="Input" datatype="Raster Dataset" expression="date1"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Navigate to the reference raster to be compared against, or enter the full path by typing or pasting. You can also drag and drop a raster from the Catalog window.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN>For comparisons through time, select the earlier acquisition of the two images to be the reference raster.</SPAN></P><DIV><DIV><P><SPAN>-----</SPAN></P><P><SPAN>ArcGIS Pro tip: Select the raster file as the input, not Band_1. While Pro allows you to navigate to the band level, it is not a valid input for this tool.</SPAN></P></DIV></DIV><P><SPAN /></P></DIV></DIV></DIV></dialogReference></param><param name="outdir" displayname="Destination folder for output file" type="Required" direction="Input" datatype="Workspace" expression="outdir"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Navigate to the destination directory where the output will be saved.</SPAN></P><P><SPAN>The default value is the directory where the most recent raster (the later acquisition date) is located, but you can navigate to a different directory or amend the path as desired.</SPAN></P><P><SPAN STYLE="font-style:italic;">Note that if you change the input reference raster after the default directory populates, the output directory parameter does not automatically update. Delete the outdated filename and press tab or click away from the field to reset the output directory to reflect the new input reference raster.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="outname" displayname="File name for output log difference file (including valid raster file extension)" type="Required" direction="Input" datatype="String" expression="outname"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Enter the filename for the output difference raster. You must include a valid raster file extension (such as .tif) if you are not saving the raster to a geodatabase.</SPAN></P><P><SPAN>The default value is comprised of the base filename of the earlier acquisition followed by the base filename of the later acquisition, tagged with _LogDiff, and including a .tif file extension.</SPAN></P><P><SPAN STYLE="font-style:italic;">Note that if you change the input rasters after the default filename populates, the output filename parameter does not automatically update. Delete the outdated filename and press tab or click away from the field to reset the filename to reflect the new input rasters.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="out_yn" displayname="Add output to map" type="Required" direction="Input" datatype="Boolean" expression="out_yn"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Select this option to automatically add the output raster to the map. </SPAN></P><P><SPAN>This option is selected by default. Remove the check if you do not want the output raster added to the map.</SPAN></P></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool calculates the log difference between two rasters. It was designed to work with a 2-point time series of </SPAN><A href="https://hyp3-docs.asf.alaska.edu/guides/rtc_product_guide/" target="_blank" STYLE="text-decoration:underline;">Radiometric Terrain Corrected (RTC) SAR products</A><SPAN> in amplitude scale, but can be used to look for differences between any two single-band rasters. Note that the threshold values expected for significant change will be different if the input rasters are in power or amplitude, and the input rasters must both be in the same scale. Avoid using this approach with datasets in dB scale, which is already in a log scale.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN STYLE="font-style:italic;">The output directory and filename are automatically populated using the input raster parameters. You can amend the auto-populated outputs or set them to something completely different if desired. Note that if you change your input files, the default values will not automatically change. You can reset the auto-populated outputs based on the new parameters by deleting the default string and pressing tab or clicking away from the field.</SPAN></P></DIV></DIV></DIV></summary><usage><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool calculates the log difference between two rasters. It was designed to calculate differences through time between two </SPAN><A href="https://hyp3-docs.asf.alaska.edu/guides/rtc_product_guide/" target="_blank" STYLE="text-decoration:underline;">Radiometric Terrain Corrected (RTC) SAR products</A><SPAN> in amplitude scale, but can be used to look for differences between any two single-band rasters. </SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN>Negative values indicate a decrease in pixel value. For RTC images, these pixels have lower detected radar backscatter on the second date than the first. By default, the pixels of strongest negative change are displayed in black.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN>Positive values indicate an increase in pixel value. For RTC images, these pixels have higher detected radar backscatter on the second date than the first. By default, the pixels of strongest positive change are displayed in white.</SPAN></P><P STYLE="margin:1 1 1 20;"><SPAN STYLE="font-style:italic;">Consider classifying the output image to highlight areas of the most extreme change. In the Symbology tab of the Raster Properties, select Classified and compute the histogram when prompted. Select the number of classes you want to delineate and click the Classify button to adjust the break points in the range of values. Note that values close to 0 (either positive or negative) underwent little change.</SPAN></P></DIV></DIV></DIV></usage><scriptExamples><scriptExample><title>ASF_Tools.pyt LogDiff</title><para><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This is the code for the LogDiff tool class within the ASF_Tools.pyt script.</SPAN></P></DIV></DIV></DIV></para><code>class LogDiff(object):
def __init__(self):
"""Calculates the Log Difference between two RTC products"""
self.label = "Calculate Log Difference"
self.description = "This tool calculates the log difference between two RTC products."
self.canRunInBackground = True
def getParameterInfo(self):
"""Define parameter definitions"""
# First parameter: most recent RTC file
date2 = arcpy.Parameter(
name="date2",
displayName="Comparison raster (i.e. most recent SAR acquisition)",
datatype="DERasterDataset",
parameterType="Required",
direction="Input")
# Second parameter: oldest RTC file
date1 = arcpy.Parameter(
name="date1",
displayName="Reference raster (i.e. oldest SAR acquisition)",
datatype="DERasterDataset",
parameterType="Required",
direction="Input")
# Third parameter: output path for log difference file
outdir = arcpy.Parameter(
name="outdir",
displayName="Destination folder for output file",
datatype="DEWorkspace",
parameterType="Required",
direction="Input")
# Fourth parameter: output file name for log difference file
outname = arcpy.Parameter(
name="outname",
displayName="File name for output log difference file (including valid raster file extension)",
datatype="GPString",
parameterType="Required",
direction="Input")
# Fifth parameter: select if output is added to the map
out_yn = arcpy.Parameter(
name="out_yn",
displayName="Add output to map",
datatype="GPBoolean",
parameterType="Required",
direction="Input")
out_yn.value = "true"
# Sixth parameter: output layer to add to project
outlayer = arcpy.Parameter(
name="outlayer",
displayName="Derived output for final product raster",
datatype="GPRasterLayer",
parameterType="Derived",
direction="Output")
params = [date2, date1, outdir, outname, out_yn, outlayer]
return params
def isLicensed(self):
"""This tool requires the Spatial Analyst Extension"""
arcpy.AddMessage("Checking Spatial Analyst Extension status...")
try:
if arcpy.CheckExtension("Spatial") != "Available":
raise Exception
else:
arcpy.AddMessage("Spatial Analyst Extension is available.")
if arcpy.CheckOutExtension("Spatial") == "CheckedOut":
arcpy.AddMessage("Spatial Analyst Extension is checked out and ready for use.")
elif arcpy.CheckOutExtension("Spatial") == "NotInitialized":
arcpy.CheckOutExtension("Spatial")
arcpy.AddMessage("Spatial Analyst Extension has been checked out.")
else:
arcpy.AddMessage("Spatial Analyst Extension is not available for use.")
except Exception:
arcpy.AddMessage(
"Spatial Analyst extension is not available for use. "
"Check your licensing to make sure you have access to this extension.")
return False
return True
def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
# Set the default value for outdir to be the directory of the input most-recent raster
if parameters[0].value and parameters[1].value:
workspace = os.path.dirname(parameters[0].value.value)
if not parameters[2].altered:
parameters[2].value = workspace
# Set the default value for outname to be a combination of the input base filenames with a LogDiff tag
if parameters[0].value and parameters[1].value:
d2base = os.path.splitext(os.path.basename(parameters[0].value.value))[0]
d1base = os.path.splitext(os.path.basename(parameters[1].value.value))[0]
outflnm = str(d1base + '_' + d2base + '_LogDiff.tif')
if not parameters[3].altered:
parameters[3].value = outflnm
return
def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation."""
return
def execute(self, parameters, messages):
"""The source code of the tool."""
# Check licensing
self.isLicensed()
# Define parameters
date2 = parameters[0].valueAsText
date1 = parameters[1].valueAsText
outdir = parameters[2].valueAsText
outname = parameters[3].valueAsText
out_yn = parameters[4].valueAsText
arcpy.AddMessage("Parameters accepted. Generating Log Difference file %s..." % outname)
# Run the code to calculate the log difference
out_logdiff = os.path.join(outdir, outname)
out_log10 = arcpy.sa.Log10(arcpy.sa.Divide(date2, date1))
out_log10.save(out_logdiff)
# Indicate process is complete
arcpy.AddMessage("Log Difference raster %s generated." % outname)
# Add the output product to the map
if out_yn == "true":
dispname = os.path.splitext(outname)[0]
arcpy.MakeRasterLayer_management(out_logdiff, dispname)
arcpy.SetParameterAsText(5, dispname)
arcpy.AddMessage("Added Log Difference raster layer to map display.")
else:
arcpy.AddMessage(
"Option to add output layer to map was not selected. "
"Output can be added manually if desired: %s" % out_logdiff)
# Check In Spatial Analyst Extension
status = arcpy.CheckInExtension("Spatial")
arcpy.AddMessage("The Spatial Analyst Extension is in %s status." % status)
return</code></scriptExample></scriptExamples></tool><dataIdInfo><idCitation xmlns=""><resTitle>Calculate Log Difference</resTitle><date><createDate>2019-11-14T00:00:00</createDate><pubDate>2019-11-14T00:00:00</pubDate><adoptDate>2019-11-14T00:00:00</adoptDate></date><resEd>ASF_Tools_191114</resEd><resEdDate>20191114</resEdDate><citId xmlns=""><identCode>ASF_Tools_LogDiff_191114</identCode><identAuth xmlns=""><resTitle>ASF Tools LogDiff</resTitle><date><createDate>2019-11-14T00:00:00</createDate><adoptDate>2019-11-14T00:00:00</adoptDate></date></identAuth></citId></idCitation><idCredit>Alaska Satellite Facility</idCredit><searchKeys><keyword>ASF</keyword><keyword>Alaska Satellite Facility</keyword><keyword>SAR</keyword><keyword>Synthetic Aperture Radar</keyword><keyword>Log Difference</keyword></searchKeys><idPoC xmlns=""><rpIndName>Heidi Kristenson</rpIndName><rpOrgName>Alaska Satellite Facility</rpOrgName><rpPosName>GIS Specialist</rpPosName><role><RoleCd value="011"/></role><rpCntInfo xmlns=""><cntAddress addressType=""><eMailAdd>[email protected]</eMailAdd></cntAddress></rpCntInfo><displayName>Heidi Kristenson</displayName></idPoC><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool calculates the log difference between two rasters. It was designed to work with a 2-point time series of Radiometric Terrain Corrected (RTC) SAR products in amplitude scale, but can be used to look for differences between any two single-band rasters. Note that the threshold values expected for significant change will be different if the input rasters are in power or amplitude, and the input rasters must both be in the same scale. Avoid using this approach with datasets in dB scale, which is already in a log scale.</SPAN></P><P><SPAN>-----</SPAN></P><P><SPAN STYLE="font-style:italic;">The output directory and filename are automatically populated using the input raster parameters. You can amend the auto-populated outputs or set them to something completely different if desired. Note that if you change your input files, the default values will not automatically change. You can reset the auto-populated outputs based on the new parameters by deleting the default string and pressing tab or clicking away from the field.</SPAN></P></DIV></DIV></DIV></idAbs><productKeys xmlns=""><keyword>Synthetic Aperture Radar</keyword></productKeys><dataChar><CharSetCd value="004"/></dataChar><dataLang><languageCode value="eng"/><countryCode value="US"/></dataLang><tpCat><TopicCatCd value="007"/></tpCat><tpCat><TopicCatCd value="008"/></tpCat></dataIdInfo><distInfo xmlns=""><distributor xmlns=""><distorFormat xmlns=""><formatName>ArcToolbox Tool</formatName><formatVer>10.6.1</formatVer></distorFormat></distributor></distInfo><mdHrLv><ScopeCd value="013"/></mdHrLv><mdContact xmlns=""><rpIndName>Heidi Kristenson</rpIndName><rpOrgName>Alaska Satellite Facility</rpOrgName><rpPosName>GIS Specialist</rpPosName><role><RoleCd value="011"/></role><rpCntInfo xmlns=""><cntAddress addressType=""><eMailAdd>[email protected]</eMailAdd></cntAddress></rpCntInfo></mdContact><dataIdInfo><idAbs><DIV STYLE="text-align:Left;"><DIV><P><SPAN>This tool calculates the log difference between two SAR granules. It was designed to work with RTC products in amplitude scale, but can be used to look for differences between any two rasters. </SPAN></P></DIV></DIV></idAbs><idCitation><resTitle>Calculate Log Difference</resTitle></idCitation><tpCatBag><TopicCatCd_001 value="False"/><TopicCatCd_002 value="False"/><TopicCatCd_003 value="False"/><TopicCatCd_004 value="False"/><TopicCatCd_005 value="False"/><TopicCatCd_006 value="False"/><TopicCatCd_007 value="False"/><TopicCatCd_008 value="False"/><TopicCatCd_009 value="False"/><TopicCatCd_010 value="False"/><TopicCatCd_011 value="False"/><TopicCatCd_012 value="False"/><TopicCatCd_013 value="False"/><TopicCatCd_014 value="False"/><TopicCatCd_015 value="False"/><TopicCatCd_016 value="False"/><TopicCatCd_017 value="False"/><TopicCatCd_018 value="False"/><TopicCatCd_019 value="False"/></tpCatBag><dataChar><CharSetCd value="004"/></dataChar></dataIdInfo><mdChar><CharSetCd value="004"/></mdChar><mdFileID>EC760E3D-6129-4105-BFB8-EBD28ADF7F9D</mdFileID><mdLang><languageCode value="eng"/><countryCode value="US"/></mdLang><mdDateSt Sync="TRUE">20201002</mdDateSt><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAHgAeAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD/AUoDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApK+Hf2pv27fF3wd+MWpeD/DGkaNPa6bB
ALibVoJZHeaSMS5QxzINgSSMYIzkNzjFeSf8POPin/0BPCX/AIB3X/yTXt0snxdaCqRjo9dz5+tn
mCo1JU5N3Wmx+n1FfmD/AMPOPin/ANATwl/4B3X/AMk1+i3wv8eWfxQ+Hvh7xXY+Wtvq1nHcmKKY
TCFyvzxFxwWR9yNwMFSCARiuXFZfiMGlKsrJnXg8zw+ObjReqOooopK849UKWvlj47f8FAvB3wi8
QXvh3R9NuPGGuWTiO5FvOsFpC+SHjM2GJkXAyFQgE4LBgwHzS3/BTn4pbjt0PwmFzwDaXRP/AKUV
7FHKcZXjzxhp56HhYjOsFh58kp3flqfp7RX5eSf8FM/irIwI0rwrH7LZXH9ZzTo/+CmvxUjXDaP4
Uk92s7n+lxXT/YWNtey+85f9YsDfd/cfqDRX5yeBf+CoXia21dR4x8J6XfaW7IrNohkt5oV3De4E
jyLIQucLlMnqwr7o+E3xb8N/GnwbaeJPDF6LqzmG2WF8LPaygfNFKgJ2uPxBBDKSpBPnYrAYjB61
Y2Xc9PCZlhsa7UZa9js6SuW+K3im78D/AAx8XeIrCOGW+0nSLu/gjuFLRtJFC7qGAIJXKjOCDjuK
/Ov/AIecfFP/AKAnhL/wDuv/AJJp4XAV8Ym6KvYWMzLD4FqNZ7n6fUV+YP8Aw84+Kf8A0BPCX/gH
df8AyTR/w84+Kf8A0BPCX/gHdf8AyTXf/YeN/lX3nnf6xYHu/uP0+or8wf8Ah5x8U/8AoCeEv/AO
6/8Akmj/AIecfFP/AKAnhL/wDuv/AJJpf2Hjf5V94f6w4Hu/uP09pa5X4U+Kbvxx8MfCPiK/jhiv
tW0i0v547dSsaySwo7BQSSFyxxkk47muqrwZJxbTPpIyU4qS2YUV4X+1B+04f2bpPh8v/CN/8JF/
wlmvw6H/AMf/ANl+y+Z/y1/1b78f3fl+te59cGktVcrbQWikooAWikpaACiiigAooooAKKKKACii
igAooooAKKKKACiiigArM8T+IrHwj4b1XXNTlMGnabay3lzKqFykUaF3O0cnAU8DmtOvmj/goN8R
J/Av7PN9ZWZdLrxFdxaT5sc2xo4mDSSnGPmVkiaMjjiXr2PRh6Tr1o0l1Zy4qssPQnVfRH5a+MPF
F3438Wa14i1BY0vtWvZr6dIQRGryuXYKCSQoLYAJPGOayK0fDvhzVfF2sW2kaJp11q2qXJIhs7OF
pZZMAscKozwASfQAk8Cu98Rfsx/FTwr4Ti8S6r4G1a10d0aVpvKDyQIqlmeaJSZIVAUktIqgd6/X
Pa0aHLTlJLsrn4qqVavzVIxb7ux5jX6Zf8Ey/iC/iD4S634VuJ5JZ/D1/wCZCjRqqRW1wC6qrDlj
5qXDHPTcOcYA/M2vov8AYG+Ilt8P/wBorSorwxx2uv28mitNIxHlySMjxYAByWlijj54/eZzxXnZ
xQ+sYOVt1r9x6mS4j6tjYN7PR/M/W2vHP2uviRN8Lv2ffFur2dx9m1Sa3FhZOk5hlWWdhHvjYc70
VnkGOf3fbrXsdfH/APwU9/5IT4f/AOxkg/8ASW6r86wNNVcTThLZtH6fmNSVHCVJx3sz8x66n4cf
C/xR8XPEX9heEtIl1nVPKacwxukYSNcZZndlVRkgZJGSQOpFctX6Qf8ABLm10hfhv4xuIWhOvSas
kd0qyZkFssKmAsueFLtc4OOSG9OP0zMcVLBYd1YK7PyjLMHHHYlUZuyZ8/6D/wAE5fjDrFn513b6
LocmcfZ7/UNz/XMKyL+tY3jD9gj4y+EluZovD1vr9pbwNO9xo95HJkAElVjcpK7YHCqhJPAya/XG
kbkEV8UuIMWpXdvu/wCCfeS4bwbjZN39f+AfgRX1J/wTt+Jt74N+PEHhsOn9k+KIXt7hZGVQssMc
ksLgkZJ4eMLkA+d3IFdz8Sf+CcvxF8VfETxTrWl6p4VtdM1LVbq8tYJLm4Ro4pJmdFKrbkAhWAwC
QMcGpfhX/wAE8fiZ4G+JvhLxHd614Zaz0nVrW+nW1vLkytFHKruqgwAElQRgkA55NfRYrMcHisLK
Epq7W3mfL4TLcdhcXGpGDsnv5H2p+0R/yQL4kf8AYt6j/wCkslfiTX7a/tD/APJAfiR/2Leo/wDp
LJX4lVx8N/BU9Ud/FH8Sn6M6v4bfCvxT8Xtcn0bwjpLaxqUNu13JAs0cRESsqlsyMo+86jGc816T
/wAMO/G//oRJv/A+0/8Ajtei/wDBMf8A5L5rf/Yt3H/pVa1+n1VmWcV8HiHSgk0icqyShjsMq1ST
T8j8fP8Ahh343/8AQiTf+B9p/wDHaP8Ahh343/8AQiTf+B9p/wDHa/YSivL/ANYsT/Kvx/zPY/1Z
wn80vw/yOM+C+g3/AIX+D/gfRtUtza6lp+h2VpdQFgxjljgRXXKkg4YEZBI4rs6KK+YlLmbk+p9Z
CKhFRXQ+Gf8AgqB/x8fs/f8AY/Wf8xX3G7FYiQMnFeLftSfsl+Ef2t/DOj6H4v1LWtNs9Lu2vYX0
SeGKRnKFMMZYpARg9gD715B8Gf8AglX8J/gb8TtA8daD4h8ZXer6LM09vDqN7aPbsxRkw6paoxGG
PRh2rNXs4vTX9F/kaS6SXb9WfO3wJ+Duhftk/C74w/GX4m6zq8vjqz1PUItJu11WaFfDSQwrLGIU
V1UBS/RxjCdAcscbxF8ZPGfx8/Zr/ZT8HeK9Z1CDTPHniOfRfEWo28xjm1K2trqO3jV5M/MXWQ7t
33nj3EGvsnxx/wAE6/hn4y8Ya/rltrHjDwna+I5fO1/QfDettaaZrDFizfaYdpJDEnIVlHzEjBOa
5/8Abf8Ag5pFh+zv4X8KeHvg1q3jvw/od1Etpa+EdUaz1TQ1RCq3NsPJmadsEgqwbJYMcn5lekbX
293T03+//hxSXNJ2/va+uy+R4tp3wh8PfA//AIKlfCnwv4UnvI/D8XhW5ltdLu76W7GnKYr0GKNp
XZ1jJBcKTgF2xwa/SwV+a/7LPwR1bxN+2VofxI07wP8AEjw74V8P6DJbahrvxZZ11nV9QdZIw5Ds
S2I5EUFRsCw4+UkA/pTWj0hFPz/NkbzbXl+SCiiioLCiiigAooooAKKKKACiiigAooooAKKKKACv
zG/4KYfEFfEXxi0jwvBcRzW/h3T900YjZWiubgh3UsR8wMSWzDGQNx5zkD9Mr68g06znurqaO2to
I2klmlYKiKBksxPAAAySa/EP4j+Jbv4wfF/X9Ys1vLyfX9Xkexgun3z7JJcQQ9SPlQogAOAFAHAF
fT5BR5sQ6z2ivz/pnyPEdflw8aEd5v8AI+5v+Cb/AMBLDS/CDfFDU4YLvVdUaW30pjljaQI7RysO
wd3VlzgkKowRvYV9UfGb4nWXwa+GWveMb+1kvbfTIVYW0Z2mWR3WONM4O0F3UFsHAJODjFb/AIT8
OWXg/wAL6RoOmo0en6ZaQ2VursWYRxoEUEnqcKOaZ4m8H6L4yhsIta06HUFsL2DUrXzR80FzC4eO
VCOVYEduoLKcqxB8fEYn6ziXWqaq+3l2PbwuE+q4RUaWjtv59z8df2iPjZpvxw8VW2saZ4K0zwWi
pI1zHY+W8t5cSOWkmllWKMuT8v3gcHcc/Ma858P67feF9e03WdMn+zalp1zHeWs+xX8uWNw6NtYE
HDAHBBHHIr9gfiz+yF8MPjBFNJqfh6HStWkd5TrGiqtrdF3ZWd3IXbKx29ZVfG5sYJJr4H/aa/Yi
8R/A1X1vQ5bjxT4RZ3LXEcB+02Cjcw+0KuRsCj/XDC5ByqZUH7fL8zwlaCwyXL0s9fxPgMxynG0J
vEt83W60/A/UPwL4qg8deCdA8R20Mlvb6vYW9/HDLjeiyxq4VscZAbBxXjn7dXgM+Ov2bPExhsvt
l/o/l6vb/vAnlCFszSckA4gafjvngE4rhv8Agmx8Sh4q+DF74UmaP7Z4XvGRFRGBNtcM0sbMxJBb
zPtC8YwqLkdz9cEbhg18TUjLA4tpbxZ99SlHMcEr/bR+BFeh/BT49eLvgF4im1bwreRqLlBHd2F2
hktrpRkr5iAg5UkkMpDDJGcMwP2D8bf+CaUmsa9Pq3w51yzsIryd5ptJ1gGOG3LO7EQPDGcIMoqx
lOACd56V86337CvxwsVndvBDTRxZ+aHUrR9wHdVEu459MZ9q/QoZjgcZS5ZyVnumfmk8sx+Bq80I
O62aPXfC/wDwVG8W2bynxF4M0bVkP3BptxLZFfqX87P6V0f/AA9Wb/omA/8AB/8A/c1fIcn7PvxQ
ikZG+HHiwspIO3RLlhx6EJg/hVHWPg34/wDD2m3Go6r4G8SaZp9uu+a7vNIuIoo1zjLOyAAZPc1z
/wBn5VN9P/Av+CdKzPNoLd/+A/8AAPvjwb/wU+8E6okMfiXwvrGgXEk4jLWbx3tvHGSB5jPmN+Mk
kLGxwOMnivqX4b/FPwr8XPDy634R1mDWdO8xomeMMjxuDgq8bgOh7gMBkEEZBBP4ZV6t+zD8XLz4
M/Gbw/rMV7HZ6XcXMdjqxnVmiNnJIolLBecoPnBHRkHBGQeLG5DR9nKeHumum534HiKv7WNPE2af
XZn6wftEf8kC+JP/AGLeo/8ApLJX4k1+2v7Qxz8AfiQf+pb1H/0lkr8Sqnhv4KnqiuKP4lP0Z7n+
x78dNC/Z8+Juo+I/EFnqN7ZXOky2CR6bHG8gkaaFwSHdBtxE3fOSOK+xf+Hnvwx/6F/xb/4CWv8A
8k1+Y9Fexisqw2KqurUvf1PEwmb4rB0vZUrW9D9OP+Hnvwx/6F/xb/4CWv8A8k1r+D/+Ci3w68be
LtE8PWWh+KIbzVr6CwgkuLW2EaySyLGpYickKCwzgE47GvywrvPgD/yXf4cf9jJpv/pVHXm1sjwd
OlKcW7pPqenQz/G1KsYStZtdD9u6WkX7opa/Pj9NPlT9vD9pr4g/s6Wfw8t/hzouh65rnirV20pL
XXI5GRnIQRqpSaIKSzgZZsfTrXkmm/txftCfBXx54Xtf2j/hNo3hbwb4gvF0+LXPD8u9bSVuA0rL
dXCEdyhKNtV2XdtxWt/wU91K00bxX+zhf6hdQ2Nja+N4Z7i6uZBHFDGrwlndiQFUAEkngAVy/wDw
U1+OXw/+MXwb8N/DzwF4u0Lxx4t1/wARWcVnZeH9QhvmjILLuYxMwTLOqgEgndxkA0qfR2veVreX
u/5sqSW22l/nr/kfW9n8TNei/aB8R+H9R8U/DpfBen6KL9dLh1CQeJLZwIi01zEzeWlthnO/A+9H
zya+UrX/AIKVa3rXxL+JN1Zav8LdO+GfgyS5SG31XVpE1vxCIopjGdPIk8qUSSRoPuHCyLjea1Ph
1pccv/BVb4j6dfRx30LfD2C3uI50DpMpWxVgwOQQRnIPrXhXwp+EngbUfAv7cNxd+DPD91P4evdT
XRpZtKgd9MVVvNotiUzCBsXGzGNo9BUN8sebpyt/+TWHBczSe7cV96ufYX7Ev7S/jf8AaA8D6v42
8dar8OLLQEiWWGx8NXUxvtM+eQMNREsjLFlUDLjGRknHSvofwT8TvB3xMtbi58IeLND8V21s4jmm
0TUYbxImIyFZomYA45wa/Jn4oaLD4Z/4JhfBmTQtN0zSYfE2v26eJbwQfZ479UkujF9tliAd0DKv
JJI2jBBAr3n4B/Ajxn4C/bI8K+Ir/WvgX4NeXRJba+8HfDa9uLW41SyaORopxZSp+8xIEYyAgFY8
8kV0Ss5yjtZtfcrmCdoKXV6/jY+1ofj98MLiS2ji+I3hOSS5vm0yBE1y1LS3Y25t1HmfNKN6ZQfN
8y8citC9+LngXTvGEPhK78aeHrXxVOQItCm1SBL6TIJG2AvvOQD0HavgL/gmt8G/CfiCx+MXji/8
M6Zrfi2x8X3EOmXt/aJPLZNCBLG0BYHy2LyZJXBO0ZJwK+ZvhD8G/F3xt/Zt8Ya1e3nwS0WO58QS
Nq/jXx5d3dp4jsL4yIw/0vBSJXOAF6NubIJJrKLu0n2T++xrJWv6tfdc/aDW/iP4S8Na9ZaHrHif
RtK1q+iee102+1CKG5uI0BLvHGzBnVQrEkAgAHPSl8GfEXwp8SLGa98J+JtH8UWcMnlS3GjX8V3G
j9drNGzAH2NfnX8bfAcfj79rr9kbw347uNP8YGbwznVbi3la4stTkjheRnDfL5sUjJn5hh1b5gQS
Kd4A0tvhH+13+15ovw50+PQIbPwUb/TdL0qIRQx3YtYnjMca4CkPK+AMAbjjFLm0u/73/kv+Yt9v
7v8A5MfoEvxm+H7eMm8Ir458Nt4rV/KOhDVrc3wfGdvkb9+cc4xVrxt8UvBnwzhtpfGHi7QvCsV0
xSCTW9Shs1lYDJCmRl3HHYV+cn7OHwi/Zu8UfsQ+BfGPxTn0zTNRfXJJtR8ULceRqT3/ANrlCwTX
KDzQpUoSuQAuHyPv1j+PvDPi/wCL3/BQj4p6Zp2m/DLxRLYaDaLplr8VlubmyTTvIhdpLQRE5bc7
MZDyN7EEZaql7suTrr+CuEWpLm6f8Gx+qlneQahaw3NrPHc20yCSOaJgyOpGQwI4II7ip6+V/wDg
nH4D1X4bfAGfQNQ8b+FPHVlbaxcnTbzwbqzalY2tuyxsbcSsoIZZGkbbzgOOea+qKqSSehMW2tQo
ooqSgooooAKKKKAPn/8Abq8fDwH+zb4mEV79j1DWvL0i1Bi8zzfNb99H0IXNus/zHGMcHdtr8oPB
fiabwX4w0LxDbxLNPpN/BfxxscB2ikVwCcHqVr73/bd8UReLvjb4N8K2/gfUviZZeG7O41DWNC0e
5mUu1woSFZDbqzxNHsWTJHKyqOjc+S/2L4b/AOjNPFn/AIOdY/8AjNfcZXUhhcLyyjdz13ivLq0/
P5n53m0ZYvGc0Z2UNFpL16J+nyP0r1PxVpGi+GJ/EN7qEEOiW9sbyS+3hohCF3bwRnIxyMde1XtO
1K01jT7a/sLmG9sbqJZ4Lm3kEkcsbAMrqwOGUgggjgg1w3wF1hta+DnhmZ/Cl54HENp9kj8P6g8j
zWcULNDGrNIqucpGrAsMkMDz1rj/ANlLx7Df/sn+DvEGrvDptnpulSQTzO3yRw2jPD5jHsNkO4+n
NfHuk0pPs7fff/I+4jXTcV3V/ut/mes+E/FVr4w0qa/s45ooYr68sGWcAN5ltcy28hGCflLxMR3w
RkA8C/qmm2msaddWF/aw3tldRNDPbXEYkjljYEMjKRhlIJBB4INfMXwN8dfEf4f+AvCGq+LNL0XX
fCfi3ULe4jv9FllivdPm1W4kn3zxSL5bx+fcxJlHUoG6SV9Tfw/hSq03SnZPQqjVVenqtetz81P2
QdeT4TftqeKfAunCb+wdRvdS0ZIZLkhY/s0kkkEjDH7xwsLxjOD++Y57H7g+P3x60X9nnwjZeIdd
sb/ULS6vksEj05UaQO0cjgne6jGIm75yRXw18ev+JF408Ya54c/Z88QaH4k0vXZdUg8eNdX9xbb4
LvzmvPIeLydjhGbGdih8jIAr3r9vy0g+JX7KVh4p0a9jm0m0vLHWo5GRlNxBMrQptBAIJ+1I2GA4
B78V9BiKcMTiKM5rSVk9Vvpro3ufMYWtPC4avTpu7hdr07apbGd/w9A+HX/QteKP+/Nt/wDH6+kP
gz8W9J+N3w/sfFujQXNrY3byxi3vAgmRkkZCGCswGduRz0Ir8P6+qv2OP2x9M/Z50PWfDniPRru/
0S7uTqEFzpao1xHcFY42Rld1UoVjUgggqVPDBvk9LMMjpwo82Fi3JfkeblvEFWdflxckov8AM/U3
aPSgqDwQK+XrH/go18H7q1jllutYs5GGTBNp7F09iVLL+RNZ2rf8FLvhTp8/l21j4k1Nf+etrZRK
vQf89JUPf07H2r5f+z8X/wA+39x9c8zwSV3VR8Q/tk+F9K8G/tLeN9K0Wyj07TkngnS2hzsVpbaK
WTaD0BeRjtHAzgAAAV4xXYfF74lX3xg+JWv+MNQiW3uNUuPMW3UhvJiVQkUe4Bd22NUXdgbtuTya
xPCXhu68Z+K9F8P2DRJfatew2EDTsVjEksiopYgEgZYZwD9K/T6EZUcNFVd1HX7j8lryjWxUpUlo
5afefs/+0J/yb/8AEf8A7FrUf/SWSvxLr9tP2hv+Tf8A4j/9i1qP/pLJX4l181w38FT1R9TxP/Ep
eh9Yf8E2NKstY+O2tQ31pBewjw7O4juIw6hvtNsM4I68n86/Sv8A4QXw3/0ANM/8A4//AImvze/4
Jj/8l91v/sW7j/0qta/T6vGzycljZJPoj3eH4RlgU2urML/hBfDf/QA0z/wDj/8Aiakg8G+H7WaO
aHRNOimjYOkiWkYZWByCCBwQa2aK8Dnl3PpfZw7BRRRUGh5n8bv2b/h1+0dpumaf8RPD3/CQ2emy
tPax/brm18t2AVjmGRCcgDqTXL/CX9h34HfA3xQniPwZ4As9M1yNSsV9cXdzeyQ5BBMf2iV/LYgk
blwSCRnFO/an8J/HbxXoehxfAvxpofgzU4biRtSn1yFJEmiKjYqhrafkNk9F+pr4V+E3jz9tz4ve
K/iVoem/G7wlpknw/wBQbT9XutW060ht2ZWlVpInXTmJQeS5JcJxjjrgg/eaWn9IcvhVz9INP+B3
gnS/i7qfxQtdF8rxzqViNNutV+1znzLcbMJ5Rfyx/qk5Cg/L15OcnR/2Y/hr4f074gWNh4b8i18f
SSy+JI/t9y325pQ4kOTITFnzX/1e3G7jGBXJfD39ub4H+PPF1r4L0v4l6Vqfip2W2EaxTRQ3M/A2
wzPGsUpZvuhGOcjFdd8av2nfhf8As7w2cnxC8X2fh17zm3t2jluLiVc4LLDCjyFQeN23Ge9JpJW6
bCi2357l+x/Z/wDh9Y/COH4XjwxaXPgOGEwJot6z3MYTeZPvSszkhzuDFsggEEYFYnwT/ZL+En7O
19fXvw+8F2ugX96nlT3jTz3VwY8gmMSzu7KhIUlVIBKgkEgUap8ePD/j79nzxb49+Gviaz1m3s9J
vZ7XULMB/JuI4GcB43GVdTtJR1zgjIwa5j9gn4qeKPjR+y34O8X+MtT/ALY8Ragbz7TefZ4oPM2X
k0afJEqoMIijhR0yeapXbk+qtf53/wAiW0ox7Pb5HpPwo+B/gr4H2OsWfgrRf7GttXv31O9T7VPc
ebcuAGfMrsVyFHC4HHSuB8R/sJ/AXxb8Q28b6v8ADXSrzxFJP9pllaSZbeeXJJeW2VxDIWJJYuh3
E85r3mkpdU+xXfzOD8RfAvwR4s+Jnhr4gapon2nxd4bikg0rUBdToLZHDKw8tXEbZDN95TjPFLoP
wM8EeGfip4h+I+m6L9m8Z+ILdLXUtS+1zv58aBAq+UzmNcCNOVUHj3Nd5SUbbf1fcD5+f9gH9nyT
x0/i9vhhpLa28/2g5kn+yeZ6/ZfM8jrzjy8Z5rpPjV+yT8I/2h72yvfiB4LtNev7NPKhvFnntZxG
MkIZIHRmQFmIViQCSQMmvXaWl0S7B1uYPgfwL4f+GvhbT/DfhbSLXQtCsE8u2sbKMJHGCSScdySS
xY5LEkkkkmt6iinvqxJW2CiiigYUUUUAFIxwpNLRQB+UPiD4zfDPx58TPHXivxXqvxAsb3VNVYWT
eDHt7aCWwijSK2aUTNv83apJ7c8YyQNvwTL8LviRr0WjeGLz4+63qcmD5FndWT7FLKm9zuwiBnUF
2IUZGSK/UHy1/uj8qNqjoAPwr3ZZkuW0Itf9vafkfNRyeXNzTmnd3fu/8E+bfhf+yudC0fULmz8b
/FDwtcapbvZ3NlqWr2E8yJn76mOOVEfGdsiNvUMcFSTXs7fC3w8vw1bwFa2Z0/ww1l/Zxs7Vyp+z
ldrx7zlvmUsGbO47id27mutoryZ1qlSXNJnt08NSpR5Yo8p+O3wRuvix8PNN8K+H/E03gKOwvba6
in023JUJAD5cQRHjwqv5brg/K0SEDgY9Tb5Yz3wO1PorNzk4qL2RqqcYyc1u/wBD8ovF158EdL8Q
aha+JJPjlYayzmS7ttT+wQzhnG/Lo2CNwYNyOQwPevrT9ifxJonxg/Zr1HwReXFxqtppb3ehXAvJ
tl1PYy7jC7Irs0KmKQxKAxA8lgrELx9T7F7gH8KUKF6DFenWx3tqSp2d1Z3vfb5Hj4fLXQrOpzKz
urW7/M/ID43fsY/EX4M3N7c/2XL4j8NQl3TWdLjMirEoZt80Yy0OFXLEgoM4DmvB6/ffGeozUVxZ
wXkEkE8Ec0Mg2vHIoZWHoQetexR4iqwio1Ycz73seNX4YpTm5UqnKu1rn4G0V+4GofA34davN5t9
4D8M3km4tvuNIt3OTyTkp1NaPh74Y+D/AAjIsmh+FdF0eRfutYafDAR16FVHqfzNdn+skbaU/wAT
iXC0761Vb0Pw90Lw/qnijVoNL0bTbvV9Sn3eTZ2EDzzSbVLNtRQScKCTgdATX3/+x1+wzrHgfxZa
eOPiLa2cV1ZqX03QyyzvDPuIWeVgSgZQNyBS2CytlWQCvujYv90flS15WMzytioOnCPKnv1Z6+B4
eo4WoqtSXM1t0R59+0R/yQL4kf8AYt6j/wCkslfiTX770mxf7o/KufLc0eXxkuTmv52/Q6s0yj+0
pRlz8tvK/wCp+Yf/AATH/wCS+63/ANi3cf8ApVa1+n1IFC9AB+FLXDjsV9drOty2ud+XYL6hQVHm
uFFFFcB6YUUUUAI33T9K/JbS9H8Q694M/wCCglj4Ximn1aTX8mK3GZHt1vLlrhQO+YRKMDk5wK/W
msHw74B8MeEdS1fUNC8O6Tot/rE32nUrrT7GKCW9lyx8yZkUGRssx3Nk/MfWpcb381b8U/0KUrW8
mn9x+Wfxt+I3wt+IH7BPwb8DfDi80zUPiT9q0qDSdE0ll/tOz1AAC4dkU74iz7/nbhywIJ6j1i68
SaR8J/8Agp5qGufGHUbDSLG+8HW8PhrW9ZZIrOOVUhEwSVztjYuLrknPz4z84z9y6H8IfAvhnxNc
+I9H8F+HtK8Q3W7z9WsdLghu5t33t8qoHbPfJq740+HnhX4j6cmn+LPDWj+KLCN/MS11mwiu4lb+
8EkVgD74rTm95y7tv71YyUdOXpa343Pz1/Z3a319v21vFXg9dvwu1SK5TS5YEK2txdJa3BuJIRnG
CXViQOQ6emB75/wS5/5Mk+H311D/ANOFxX0za+E9DsfDY8PW+j2EGgCA2o0uO2RbXySCDH5QG3YQ
SNuMYNJ4V8I6F4G0O30Xw3o2n+H9Ht93k6fpdqltbxbmLNtjQBVyzEnA5JJ70o+6mvKK+6/+Y5Jy
s33b+816KKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFcxffE7whp7XiT+J9JE1mXWe3W8jeZGTIZfLUltwII2gZzxjNcTe/tR+BY7G3vNPn
v9atpd2Xs7Rk8sKQMsJvLOCTgYzyDQB67RXy74k/bSMcl7baN4cVXjYmK7vLjePLDgb2hAUtx1Cu
cE/xAGvL/FX7YnxB1AeZZXlloQtRnbZWaMtxubGXM/mcKFYjZjOWz0wAD7yrnfEnxF8KeDbqC28Q
eJ9G0K5nGYYdS1CK3eQbXbKh2BPEch47Ix7GvirxP8Rte8SpIb3xDeXdleSK8lol2zwFW+b7mRgB
sH7u0YAAXpXgXjT4U2l14i0bxHZ3zvPZhi9pLF5rOGR0Kl2IX/lqRu2kspO4lgjIAfp98M/jR4N+
MMWoy+ENZGsR6fJ5NywtpoQjbnXjzEXcN0bjK5Hy/Su2r8/v2A/EVx4a+MGq+D3WWx0660Z2i+0B
Al3JA8BhEZ3cFY5rk7UUbgHP3UQ1+gFABS14rqX7Uuj6T4o17Trnwn4mXRNC1m30HU/FKpZtp1rd
TRwPGGUXP2jZ/pMIMgg2qW5IAJGh47/at+Evw9t75tU8feH3urG9gsLuxtdUt5bm2lllEQEsYfMY
Ukli+AqqxPSjt5h38j1qiuch+I/hO48Wr4Wi8T6NJ4na3F0NFTUIjemEjIk8ndv2Y53YxWAvx08L
zfGaL4YW0t1d+Jv7Pm1GdoYSba2SMwgxySkgeaROjBF3EKctt3JuN3ZB5noVFFef/A/xTqnjDwXq
V/q919ru4fE3iHT0k8tUxBbaze20CYUAfLDDGuep25JJJJAPQKKKKACiiigAooooAKKKKACiiigA
ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPibWP2n/GuvTXRttTj022lix9ktYERkyo4
Ejgsr9f4sjqMdvNPGni3XvE+ky2t94l1a8SFo/LjlvZJ03MDlzu+Xgbxk4YZ4zjFafxUsYPCfxS8
VaRJCLNor6SSztLYBI0jlzLHgLwBsK4xjGQMZyK4DT7wa1qetw3t0s1rEYIIWjZgUY7y8ecfMVwm
cHgemcUAW7G6uBHA9xcRMsib5EkiG9MqMIu0/MM5+XIyD3wa3/ttzDIwNukAQfug5IRgQMKqZ+XH
THA9+1Y2lubG3bdFaT6lHbh5Xjt/KjlOMFo4iW25KnALM3QZOABJJcpfOlrqVqzxMI5XV442WJ45
I2jLYydwcBwVBAMQPXbkAzNa0u2sYC0s8m3c4LhgWRs7yoZ+gBIIIzgYwMCucuNSj0vS545UmEwu
gjSFRnAZcfw5zw55A5P13ehPdaebNtP1E8XjYWyntvlO47WDlvl6bckgcAdar+IvBdnaWbRjUnhA
+UHd5hYley4JI6cdSAcdiADjPC8r3kyyPYrLZg/Z5Ykd3K5V+4XAOAwOcdTgDjHay63p+lW9/Prh
v7m/Cv5NnZ7QFXawDElGaRtxHyDaeQC3zgrW8Mx6dpWkY1G4maWO32rHAyyqq5QGNhk8/NweFJJb
OXNVPEHgFFha3jgs3jkkFyBImAJQ/mtKpIyzBjuGApyCQwyCoB1PwL+ImhaH8bvC1zcRq1/HfxaY
gklERiS8AggPI+YMZAFxwWRkB3KwH6P1+V8OrX3w5tbHVF1Sa71GxuY5Iru6ZGczKxZXYYK/eUEg
AKSQAoHA/UPQ9asvEmi6fq2nTfadPv7eO6tpgpXzInUMjYIBGQQcEA0AeE61+zBrWua541tbnxjp
p8C+Ltftde1PR/7Bc35aGO1TyEuzdeWI2NnHkm3LYZwCDhhwXjb9hXxX488cQeK9V+LzX+rWNw02
nvfaNPNHGgv7a8hR4vtwiAU2ojPkJBvVgSMqDX2DRRH3XFrpsHfzPnfSP2QbPTfjpeePrjXW1Kxu
dW/4SAaTO2oKbfUTbiAzRbL5bbG0YxJau+0ld+MY9R1f4a/2r8XvDPjn+0fK/sXSr/TPsHkZ877T
JbPv8zd8u37NjG0539Rjnt6KFpa3T/K35B5hXlX7NP8AyTrV/wDsc/Fn/qQ6jXqteVfs0/8AJOtX
/wCxz8Wf+pDqNAHqtFFFABRRRQAUUUUAFFFFABRRXN3XxJ8KWemvfv4i017RASZIbpJc464Ckkn2
FAHSUV87+LP27Phl4b1KCys/7Z8SmRAzTaRZL5cRL7FVjM8ZyxxjAIwQc81i+H/2zNR168vNPn8D
/wBkahvaOwt/t0l3PelVZm8uBYELbR5WfmC5nQb85AAPqKivmmH4gfFDxAuo3w1vTNJuxZyCy0G2
s1P71W+WSZpdzglmWMqDj5TgbuK8t0eLxNpEcUHijV9Y8Qwwsk6XupXM8scMu5klAWSRwrxfIoZM
v8z54JLAH2RrXxC8K+G7prXV/E2j6XcqCWhvb+KFwAAxJDMD0IP0IrgNd/ak8Fab4WOu6UuqeJ4V
laNrbS7IxzBUAMspFwYl8uNcux3fdRyAdrY+Gfid4oiuPiWI3upJLgpb2ttbXcAWOdQy5aRWCh8q
i4AAYrjIKgEdt4F8G2Otalpmr67dSeIjHNFbKyzCKzk81kIjEXHmBFEaeZy2S2DjzFoA77Wf+Cix
1zUNT0zwH8PNU1aaO1ma1vLyRGYyLC7b/s0RO+NXXDZljyqStuVV3VmfFL9sD4m+C4pbfWrbQfAa
27Je3Gp39vLKIbVXjiaKSOE3JWSSSZcfKWXamxJ1kMiee/FK6nuvsf2HR7XSdRdxFGdIvWiIVz5c
jykDCIkUYcK0ZDNcLlsZYYa+E/h1rHw2XTRLp8fj2001ba01S/0iLULwwloXlt5nMc6zx4jEQlfd
sVmKttmYUAfTmj/Ei/8AF0Vq8HxNGuW+v6fMmn2UEaW6eZCyM13DIsEb3QAVmaJGUPECVRvn2++f
De6sLrQbn+zb2G8tI7+5CC3TbHCpkLLEo2j7qsuRzgkgHAAHxN4V/aI8B+DZLTQLu4n0+10m1GjI
NO05bOBkSTzCIRmSMhY4QWZ2xJHGNkaGMk+/fs1/Frw/458Va/ZaBbSS2l1bf2nHqMOnCyt5QLma
KQKpkLMPO81QxTP7uRWb5VUAH0LRRRQAUUUUAFFFFAHwh+2R4VOnfG6LVbeS6ma+0+C5kSRyY4mD
+SdoUrhdkSkg7ss/pxXAXOnpp9pbmCWC0nmJd2RVBJC/eZR93CouAuOd3BPX6R/bc0CfUbHwhfmO
ZtOge8tbiRSvlxtIkboW6kH9y2DtK9QeSoPyqviS91G+urS7hjjnAkNvNbTorZWc+SuJPmMgQBz8
hTfkAjBNAGZNrIur5p0tpL+W2jkSaTe6Q8svXcSuQx78gMf71dvoa6N4i0W3a7MVpqreZGsTJtkm
wFIG1gGwM4IIyCDyB1xtBuktdck37kj+2pbQw3MvlkTPEJjHEjKFcBNz/IzD5HLEsrV1KRRXd15M
aqZjAF3o7BYwxXJ7EjGMMR37ZOQDC1TwRoxlW6t1Cuu94odzABiQCCeSAMY64OTkEYAy9Xsb3+0Y
YbYuLpYwjD7OUUJjgbdu04zgMRgbcHlcG9ewyW/lQ2est5gmaJnlgZmPK4OSOcYYE9SRzycnZAvd
ZsYIkcsuyOFprhAcqTgEKANpO72zgYNAFPw/oOfD41gafcX0c10olv1SR4VkQFhGZHIUHaTld38Q
GWAXNjVtSWHRZ/s5eC8Cy4UZQLyNo+f6nLFiMAnj5q7jxB4gj0vw+PDmlWM1tpMbyXYWa6laeeQg
lZCrnbGfKl5Ee1CWZ8Ywq8xptmsy2/8ApEUZnMsUgSwTLw7EUFHdnCSZMhDFCVKpzgsQAcPqWg61
d6eLXULaazj+ymN5rgFJZ5VYo+0NgnaUkQscDdvGPl4/QP8AZ516XxJ8FfCd7LbrakWn2ZYlXG1I
naJONzc7UBPPU9ug+N7XSf7Y1i0sNNfE128UMFuZQw3yYRQCx+gLevJ7Y+i/2P8AX4rrw74m0XyW
iubG/S7cggpsmjAVQc53AwvnIx93HcAA+gqKKKACiiigAryr9mn/AJJ1q/8A2Ofiz/1IdRr1WvKv
2af+Sdav/wBjn4s/9SHUaAPVaKKKACorm5hsraW4uJUgt4UMkksrBVRQMliTwABzk1LXzP8AHTTb
7SfihZzWFz9q1fU0a80yzh02J3SSNYYmw5+dn6ESLny8gEIpLkA9xm+JvhSGbyl8QWFxNtLGO1mE
7gDHJVMkdR+dcdqf7Rmg29pI9lZXdzM1w1vbi4KW8c5UKS4JJYIAwySmRhiwAVivz/q0NjYatpEU
WiPZzQR+VNYSK6tESysWaIymWOTFxuJKhH8z5VJOTN4d0HU59ctdXk0i4t4pVIsj5YtUsLeFQPs0
gLExq27zCeeiqdow5APd9H+LPiXxZrFiuj+HIU09bmS2vVuJg0oZVRwQdyhV2EnIEmfMiGFy23xb
4oePPijrWvp4J1LxJD4Fnmk88y6axineEyoI2+0bSiDcD8iSF9vysWzz7n8JtN1zw1dapDqdhDJb
3UdvOt7ZoqedcfNHOhj2qwVNiEOR8wfGSRz5B8cLXS9Gj8d/EzUpZNNh0e4Aa4aVIVYJGsJWIugM
kzKrIIwW3mYRgE43AGf4w0mzk+3WmreJ5v7Xt7aG0t45bt70G22kgSTTECSQyM77jtDAoueFz8+f
EjxPNfXdl4dsdVtrMyIPtH2VSkcTudwjO8YD/PKNpBUYUhjg58R1H4k3ItZNVvNTuZdMvrkXCfbB
LkKodIhE0qFlYAqxG4YcE5AVsM03+29NXTINLKaTou6Ka6ur1C0vkJJgphhu5VgWJOAAxDEHFAHQ
zaVeaTYQRxTT3+oLPA8KKCfKUOrDayA4BDE7jjlc5BXA9r8B2eo+G47HWtSlurc39+ker3iGWWWz
toRmKO+eRc7T9ol2BcoMsG2OhRvC9cW4h0tfs940d7frHH5n7xtluwUOdxDsOhjA+XG4ggnaH2tc
8VePb/wLaaRea3c2+nWs3lwWBKuY3MnyNH1L7iA+G3FSCQMigD7Db4k/8Jd4k8vwRpVhNY2c7Z1L
TF2QpHsz9pVsAO2WXKoAAIsgkuqrkeMvhpr/AIuvo0TVZtatbW2W8aeNIGu4UJKGJpg++KRWjkdQ
FUYkZMExSyP8v+Ff2qpPAHhgabbeGIby5N7cRz6ld7oVjkLGPanVizsd/wDqwSXIBxtFenaJ8bPE
/wARta060vtVhl020kju4rO/uoUEATCzXCeajMAgmwzszBQ+GG1gaAGeNP2d7Tw748j1+30xLXTL
ZvslzqV5IHkSRYGExUCQMSheQkkyK2wIQoJC1PipfrpugSahp0FzYy6Tai5vdJ0gf2jcXRyPtbSM
FAjto0LMruxB8uMbstXrP7Wnw51vRLP4Z6homiax4om017zzdMivnZZbid4dkU0EIBZeJmzDIhDx
j745HnXxE07Q/DXwrn8I3McN/wCMr9fO1X7Nbky/2jC5iVJJAw3+W52x5yMSOA0ncA5v4e6p4616
a2bSPCqwtqEX2SXWZLZZxFjOJYvNOAyrIwARG4RCTuHGvqnwetdestbubzWNU1BtJkktb+w0q2iQ
XKPEq5kZlBZACwBTO5gWO8sVPO2PxYaDT20qQ6rY6R9nmFzHauA92wYAfOgAVfm25+XOw/d34FDU
tDtvHniSzvtIsPEC21siyWvh1QsMYn2rE5EcS5kfeSyqQ8isCcAnAALHgXS9N1yGe3vG1HxObz9z
Yx2jAvdLIhWQIvExJVASVKkBRyzPtH2R8EbHXfAviA3uu6Xb+F9I1S7awazYRqLaQw232RMxs6M0
ztcM0zyBjI8EQT5ga+QIxqGhTQeJrPxRoX/CV6M0tvFcLeRQz3ErLGSG1CB3jCpHKnmeewHlurDJ
dma54D+LGr2eveHrx/Ek2q6RYSQ6pc297qDwQO8cxlKeZI7DfiMElgGYsQAeCwB+odFFFABRRRQA
UUUUAeUftPaJa618H9Sa5Ee60uLaeJ5gSqsZljbIDAHMckijOQCwODgV8UXGkltSt4DcWkxwJEZd
zqMEMHLHhQCePqpyCef0b8TaOfEXhvVdKWc2pvrSW1E4XcY96Fd2MjOM5xntX58axdWMumyteW8O
ohURoFkjMq+aP9WcHvuxhuvfIoA5/R4b2z0+zOoXCLL9njlhEdvJbwuCUMhMe4lCdg+RyWG5hztY
Uv2yDwesNzZyy6huLW6yM5JG6LO5vMwSm4KMjLFn5zgtXT+G/g7408XXUC6d4Y1WK2kUXfmTRLHB
LCwwGWWUqjkhhhQ2cc8gEV61a/sl6/rltYLczR6Ikdwnn77otM0YOW2iMFTkM38SnOegJyAfPVxf
RyauZZIGa3LurR7AY8AhmXIxyDtBAx+uK6nS9LsomW4S6mSSC4KxXFndmKQIjDb5fZWyucc9ONpG
R9Gwfsb6PNqU0l/rkjWLK2yDT7KO2lRyynPmkucYDKRjoQARt577Q/2d/Aegx2Ah0d55bMxuk1xd
zOWZMcsu7byQMqFCnAG3AAAB8hyaY5SGSztxJbSXJeOZv3QuGCISioVGNoY5wAB5o4+7ntR8O9X8
T6t5Vj4LultrlYhEzWskduIRFlU3ykKVUJtB4Pzj5mLny/sHTNB0zRWnbTtOtLBrhg0xtYFjMhAw
C20DJA45q/QB8g2f7LPjLVZZLuWW30maOf8AdC4v3835SrLIpjDgDcPuk87m6cGvbPhF8En+E+sa
rdxa7/aFtqESJJbfYliwUYmM7gxOFDuoHo3OSMn1KigAooooAKKKKACvKv2af+Sdav8A9jn4s/8A
Uh1GvVa8q/Zp/wCSdav/ANjn4s/9SHUaAPVaKKKACvP/ABd4NC+PtO8WaZaQLrT2TaXNdSO4LRLI
JoVIU8hXMv8AwGWTkAkj0CsrXmgtvsF9c38dhBaXIYtNMYo5WdGhSNjkDl5VwCDlguBnBAB4p8Nf
2cdO8J6j4l1vVLi61jxbrZeWTVbkO8qKUIKxgEbB85wDhhgA5xk9vY+E4fCen+cTb3OpyOLy5N0G
mlZF2tKI4kG5mJZYwAWI8xTlzhGtXuvS+KLW1u9F02LWDeOIrb+0LeWzFmjRB5BdLIhlRhgYXarF
nRGVdpceW+LPixpvwg8UaW3jPxp4fj1C5L6pcXDtJui01EfCwwqxaeaR3ZY0G7agldVYq5YA6rSf
Gl/ea1f6frNpdyXFurD7PYwxyoZvMKKkbuWA3shYK7KqeWAck5XxT4ufE6wureSxstJsLzFxtbT5
VmmlEkJbYGgBIDx7WjZiAwKSH74AHmPxW/b11D4rX1r4a+EVhq8RvxDNcXy2shu0SZh5JdwrRxJu
bKkODhNwkCkhpPC/wy8ZaaW8X+OPEUmh2q27TXb6xIby4vGcoY1UHMwYMiYxzkglSFTaAc14q+HO
t+ItNh1nxj4i0vw14eYNKmm3LRyDzV2HG9k3P+7hBHlExjDGQDDZ8f8A+Egt01qKfTrn7Va3haS3
1Ga0EcSfKTG2QGC55HTHzP1Irb/ac8C+GbjUfDN54N1y+vru0vHmRdYuJDFOoEZeMQDyQpEsMLsq
YUEByc7scnawyaZ/bh1SWO6n0+NZZ59UmhZ4I8KfNkEhyWUH5iEXO7jcSqsAWLq61VNe1aKK5Wws
Z03aZFcq0hQx7EAAUqCiKNvKRiRgzJGh6WdD8SXPiKP7BqkUiSIrJNZ2zO0Ubsd+9VePBciN8HuO
c85FOPxa9otvHqqLZ3aTmCeXEqbpdu3ETIHDIHyMncQzZCgsWHQ6TaWmjNq801tcLdPFLctNppxJ
cOsX3osAbXVQm4si42c/IAVAOe/4Qmdo7WCwvUSw06HfPGluroNgfIlYYbYPMZwoDHIHTGKw77T9
Xu/D8cur3UOkGGaKa4nj01MxxxcqjRMQvzHzMMrtknr8wFepeG9Ttprg2zW1rp6zWqTwSfaFZ7jG
FfdEHJKoTGCwH8Y9cVt2djYHVxeapDcTaXbqsSx6ZeQ2xberANvdWwoQMcDO07DkHigDZ8dfGO48
Rabpmi6D4TjudFsQ1tfeL7u/+2anexS20nkXM7qAVbZGd0fmFNm5EIRVUYln4Z06LwxaJb6npHmQ
mO0NtMlwbh2eESl9/loshkGJHUyDyjMUOHyoz/Ek2oaRp1nqMKw6bDIqrc2en2sjrqUBGJTIwLuS
n7udFAAJtYfl3ZkrKj8X2891Zaa5UyxybrkSoZZ44/8AVpHGqBR5YLQHJYr8rfNu6gG5cWIutUbU
rq8a+tfPVVWZsPISyg5lJJAOTgE9VJOSw8u9r2oxx6DFNpEQ1BJGkkW4SQr9nc4VSZQ3z7FO4qfl
LRvhT5vzYHhDx1pev6pc2MymyEbM0e6NklGxWQMYz8xTAXaWABOCDuzjqm1a2tIkdJ7eZZFeER/Z
HLq3y5WQcqWAeRwOQM4xyRQBR1DwTrmrTJLsk0fQNVsLK202xktodQtp73yUBlM/mQhQ7G389wGZ
Rne6yj52SeH0W/uLaRo54EeK0jVdSjvYpli2xBlfOyNcRR4w20nnAyAd+K8NhamzjlMEU6xQnIMa
rGzRu3msrF9ilVkAyQDESAGLYqQ+NtO8I2un3jQW+rG1nBltrxJZY9xiKAkrtI2Etg/LwFBGcqwB
+kPwr12HxJ8OfDeoQ3hvxJYxJJcM5dnlRdkmWJO471YE5OSM5PWuqrwX9i/xpd+MvhHdpc6VaaRH
pOsXOn29vYoyxeXhJvlz12tM6eo2Yb5w1e9UAFFFFABRRRQAVR0fQ9N8PWhtdK0+10y2LlzDZwLE
m49W2qAMnA5q9RQAUUUUAFFFFABRXLa98UvCPhm3uZdR8R6dB9mcxSxLcLJKrggFPLXLFgSMgDIr
xjxR+338LPD+v6RpFkdc8SXOqo8lq+k6Y3lvthlmwGmMecrEQu3IYuuM4YqAfSFFeN/s4ftFL+0F
p+sXP/CPt4eawMTLDJeee8kUplEbsNiFCRFnaRkZx2r2SgAorjW+M3w/Xxp/wh7eOfDa+LvMEX9g
HV7f7fvK7wv2ff5mdpDY29OeldVfaha6Xbm4vLmG0gDKhlnkCLuZgqjJ4yWIA9SQKPMCxRSVzv8A
wsfwkPGY8H/8JRoo8W+V540H+0Ivt/l43b/I3b9uOc4xigDo6+Kvh3+3r8Cfgva+K/BvjLxz/Y3i
TTfGfif7XZf2Rfz+X5muX0qfPFAyHKSIeGOM4PIIr7Vr5q+CX7Pfws8ceF/EOt+JPhp4P8Qa1deM
/FXn6jqmg2tzcTbdfv0XfI8ZZsKqqMngKB0FAGV/w9G/Zi/6KZ/5QNU/+RqyfFn/AAVY/Z20jwrr
N/onjX/hINatbKaex0j+ytRtvts6xs0cHnPa7Y97ALvbhd2TwK9r/wCGTvgh/wBEb+H/AP4S9j/8
arJ8WfsX/BDxZ4V1nRP+FW+D9G/tKymsv7R0nw9YwXlr5iFPNgk8k7JV3blbBwwBxxQBxX7Kv/BQ
z4XftUXFnoWn3Fx4Y8dywtI3hrVh80pSNHlNtOvyTKCz4HyylYncxKoJr6I8Yat/YPhTWNV/sy71
ptPtJbxdNsIvMublokLrHCv8UjFQFH94iuX+DvwB+Hn7P+gyaR8PvCen+GbSbHnyW6l7i5wzsvnT
uWlm2mWTbvZtobC4HFegUAfnJ8Rf+CiHimSxSy8FeGdPgtrq4kt11xppZ1eFWMYljjlVWRndnJeV
CdsbblyVr5F1KHxH4m0fXZ9dn1A3OuMxuDLEILqeSV4490vkgeah8uPKNhRtYKp3Dfr+K/DcPwx+
LHinTtUsbXUH0HVLmDT9S/stkMrRzSQ5yMkL5SQ5PYqSMABjfj8QR6h4g0e4QppzwXMV02pb7dnt
ZT/qjtZRuIyhbcSoBBYEZoAwNMt9V/4TWa2m8RxG1tb+G7SxRmFiZreGBUYK3zTbEgi2M+WAZCUG
4MfWY/EWv3n7/UNRur65tQ0IvopXdpYxlZF3hNxBb5iC3zDDYBrzGyaws7OzOmaZMupzQQ2st8th
NAD5BxO0QPLoPO2gKr7zJjIXeUuWnxCuxpbSRQ2t3ZJFm0vLqRJDexsAkbSIFDBt3mEoRuAKEoPk
FAHat4Zma1RxfTpeQjyP7SUIxURuAOUXapIXJ+VSCzgbeKpto8XiS1vJIUWO0YM0Rg/ex+d95GYD
dlgS7Agbssp/hwLGh+J7HxNo9ze6l4h0PQdZku7TTrnTrvTJbb7BB5NsgZkijTci+dvJ3NMPNbeu
AxTt7OJ9Tuvt0EcEtluSFvNuwk29z5JYW5ZnKZfDGNGC7n3EbcsAeeyeDoNJkDx3iWjtcNdxrblw
q3BRsvtJRgjogXO1ioLbQ3K1sfDvT7zRvFTXV/cT+IVE/mQ2+o7Hitdsy7vkYFFYIrAGRJUUTBvK
JA295otr5txLI9jHPJeSSwq8yxzS2cqokhkMIYEAYEeSrqQ7YHyuy8vf+Lhb/aAkUjrIGYSzA75W
UDYn3iwAUHj7oG35uSAAc83hmDRdW0u5e40tobcRtLczpLIsFzi6jluQixn5RF5QwkayZMh2+YFU
s1/4iXc2k28tiPter6XCPtFtDDIStr5nmvGEX5pHPngneA25So6LnY0e4a9xE1yUnnj81p5Du8s7
BkFAfug7uVUE5yAWwFxNTuLjR9csL7SdLdVuf9EutTtyiShg3lweWsjAFiZWYlssFI+6jEoAXo/E
41mzGlwWt4LpUiaQBRAsaSkRhQxyuDsYbQoyTgAHAZuoafC2mO0l/fWEixfYt2VVYywbLjblcMFb
IXaAX3EDC42dT0uFdPS4m1LdN5VvPJaPJKZLcBA6q6MFAO1gcdBkGMEMGalDZp4ga+tL23vdZdrG
C3u7i6Y3kz2+IYreORZAzPuU4ChXboBjbigCrDo97crNLJe27TPZC4nvdWdhNE+9idqq0rTZWIAk
hv3iFsHcCOhu0j0+zu71Z2mjSV5IomgLxOhJyEcEkMGLtlgCCpO0kgDAivZdPsCgjvJ9Vhux5S6h
Mxk+Zy5bZEqD7sgjVWBG0ycbvnXWvijSC0tLJlt1tzM0YJb7QCNuBvYgFioYt2OcACgDV8OeGrvx
bqGkK13a6YXvZGdrhg4dVCFBJvjLA/vFZo4zvXy2wSuTXU614Z8LfDvUP7M17WhcPeSg4itXtY7V
GEjZeRvmJVYwuJP3TPMoLLhHHmFmbxFluHit5tK08vcNcSSv5GnMRG07uwYRMgjVIyJXwVWOQRBg
Hj19atPF7XutaM8mlOlozpb+bFIrpII4XEqlGR1HLx+RMSQU3kIzShgD7A/Y/wDHMuqalqOgXFk1
tNb6ZbyRm6WSO4SBGPlRkHKsgE52ldu1Qq4Ixt+oK/Pn9lnxjdaL8d9IjL2+kaFqiSWQt7+53zR7
oVkjhQsoAEk20AAg5jjUZyA36DUAFFFFABRRRQAyaaO3heWV1iijUs8jkBVUDJJJ6CuR1b4weCtE
jtWufE2nN9qbZCtrMLh34JyFj3HbwfmxjOBnJFfImvXms654ku21Jb4S7N0rXMjSmFlJASRSFJI2
8qOnoKn0sWXh3aLqSNbshTbrI0YkZSCWc+X8qtkZzx8ue+4gA9/k/am8NM9+lrpOtz/ZyVjma2RY
52yQm35y/wA2OAU3f7OSAfNta/bG8QXFrbnSfDFhp90qs1zBfTvdFTkbV+Ty9p6nBzwR0PFfOniq
zuG1QppMF4LswfaLqCGV4vtcrjbI7ISzgAAEMSp3BuOSao6pdXemMzX17dysXjhEcMLs0LPtT5iF
JILZYu3ZcsVUGgD1/UP2mvFPieG7WTxHJaadK3mMlnCIWVTKV8pJYwJEKlG/iY4AyxBbHlPjTxPr
viyxu5Li/wBT18wRYtLnU5pJHgLt84jLnCFgsWduRzH26Y+utdx29ve2NmmpQwq37maMScBc7vLB
BJbJGCDkqTzVfTfFIuPDc+nyyJGqiaRGtII1R3yCrPI8igYCgYAQ9gCztuAPQD490KOO3umTzrp1
Eha9hLbcK28DaMcBXITbjIOMdK4/xl4F0rWZtP1JdAt21rT3a7g1JZH8tZGHLqgIQkkbs4J3IrA8
LjF8G3eoeVFdRSCS4t7gTB5H++gjL/JEFbKDdFjkdV6ZrU1HxxNpMN5c2yLdSSSG3nur6184kNI0
fAeMso3YyybcD59y4U0Aem/sSx6j4W/aC8i+NqdP1PRbm3sobRHVof8Aj2mUON+wKFhlHQsCygcB
mP6Dnoa/M74E/EzxNp3xZ8NWdjH5lodZs7eR7aeKWF47iXypxksBvj3TbgMnBUqSx2j9MqAPkPxV
8K/Hmuah8U/CcPgjUEtvFXjTTte07xebzT/sVlDBDpwaYobg3IlVrSUKFgOSU+YAkjyn4xfBL49/
EzxzLeP4S8SQeFF1NLy50K08Zs6TtBqdrLHLbPNqmFLW63BQJFabGxkZEbL+iNLRH3XF/wAv/A/y
Dv5nyroXw7+Nf/DUF3rOoa7q9r4JW/FxaGNluLFtP+zKosZY21NQkgkyxlWxkfcM+eVO0WrrwX4v
8UftQWtzqXw0vNB+Heh6kdV0/UtHk0sLq+qNbNC2o37faVuAqRny0jWJmbhnOFVF+oKKO3kHfzEr
yv8AZp/5J1q//Y5+LP8A1IdRr1WvKv2af+Sdav8A9jn4s/8AUh1GgD1WiiigAooooA/Lz9sDwnp/
hX45eKo7a0u7GG8nGqEyQOxl3wpNcTRzSniMOZnLI2EaLaNuOPG9QtLI2+ra3bRaY1ndbHvY52ia
FZoooHfJMS+UI2jJDHcyj5N7DDyfYn7fXgzTrf4leBfE1zYf27eavEuiW+i26CK4upYmmaILcbmZ
TuvDtVIW+YfOJEJib578L6qPAeoabcxf2XcSWaiYWd5afaI7ki3ZvIaMLiZdrrGhUL88g2NhgyAH
NWN8tr4iktC9rcWGnzxtPYx3glMX3nilK5GAoaM/cdQZuDtL46zVvFF3pPg3SdBeVdL0iaaS8ih8
lYYp7eJljs7aVVG2by/KJ3INjyzyZ2jG/lPFmrHUPET2Opy51S6gF1qA0+7hNmkZluGFwgRjDuaR
ZSAg2kbCNyBGHRSeBtM1rQ21vXNJku9P0+fymcmTZKpEcu4nLxwrLGs+0lHcNFt8ry2QkA8w+NXx
Nv8A4b2P2+7t/wC0Na8QyqkR1O5QSLiUF/MZnLAGNz8+cAld2AFDT+Hv2pfCPiDw/ob6vFLohuB5
LR6iQ8U0mSpZZBGw2/vCDI+zOwjICkLQ/aA+Hup/Fg6d4f0GHRtE063ulmhXUL1t4UhlRGaKPy2U
q5YOAuckBR0rg7X9nHWtHj029u9MtfFOpadLD/otxcF7eZY5TutmLOuTsdF+YIp8pVHyhtwB7Dd/
GbQJbJEtdSjui8N21pHYXEMkkskcRMcWzz8SNIxSEFcn52YZYAPzun6rcXkllLc67ptxrepTkPDZ
6iskDh2fyRG8Ty4YhDGCWHKuoZy5rQ/t/QPil/wgWr2nwk03wMNNj8q4WXU7g3MlxDFCq3EURRUi
QGEgIzfMFYsCVjNQL4b0uHxFq2oWmlWOksZBEdQkyblVELbJUeRhsBMaE7yCXf724sQAdhoetao0
4tINPjFxJEqKsMRICbv3siqOdwRlbPT5ZR8pIUyXGn3NzKtpLeNaw3EEqT/ZI1aCWN4XQqyu27aw
kJJBAYoo5Dc8/puqf2hp4vbAXExSFT50dvLI0yqQMEsADIV6ldpAZVG853bbayb23fz7eK2dUSBZ
ruUKkZxuG1iACqhcblA6HAOWUgEup3dtqHizTGu4vsJv7sSCaNZxDGjuWlXKIxYhCD85O47FOWxX
TwzaRYW3h+7037XfSXMFxbJqWIlNs88DCSB4Bhi2xjmS4wMzNjDIHHGa5oFnrF2Ev4ZbuMMIIzD5
saxxvJABdxkghSsUKj5F8whnwdw2VeuIdU1a4+y273Lw2cqJKlwzo86qW86Vi6KhIXL7l3j5CMAo
xABHY2N5rDWN9KXkt5rnISPUC8kkTMURlcl1O8I+MuGX5QQjLmrnh/ULXxFqUUmn2U2rS6jFDFBF
pqiWcx/aIgjeX8pLCOZ2QD5WeNFO7itT+x30q4fyoo7qGzeNY4Zowqw8KskiFVbaxVwSQQDsLkZL
bqz2s+g6lPHdWkxzEN8LSFEjk3Is7Mmx1bLuFC7k5YthugAKq6l9vhvv7S1RLu1hvJkS7e1cpchG
aJW8uPzI1dGtxGWbO5gGZUDF605NDjubEiedZmlicxC3l80ZVmRt+wPtYskwH8f3S2QeZNPvLvT7
OC3vXVD5pJkePEewSOscW9nLbgmMc85Q9MKWap5c1/PBcyQz3MRLR2sao6D5tyBd5VSEICg7yM53
feNAFv4W6xJ4T1DQNc1Wxt9VfTLi1uYhJMsaySIxkjWMndtVsIRldy7AcZBr9Vq/KDVdD1RYL1NX
8O3ljqNvNFE9p58UqRqhQMzSW8vXeDMVjzGuShKjbu/S74O+Jh4w+FXhPWDePfy3OmwGe6kUq0ky
oFlJBA/jVucYPUcEUAdjRRRQAUUUUAfHfxk8T2vgb4iaxpFzc6fAZ53uze3jL5u2YFwIowcsVLBN
v8QO7B27W8Tj+LH9q6zfwafoslj51zHC+p6ogOANxaXaQwUkMj+wlAOMAt3/AO3j4PTT/iroXiFb
K1t7fUdPWOS4QES3U0Mh3ghDuLeW0C72B+XCj28e1iwhhht1FrNcm32gJB8xUO2zAIG7jjJHC4BO
BkkA0NS1K107SZNAtNavDeTWoWK7t5TLIVX5TvZ2MkuMAGR2yQ3uMYS3F7odwfMsmnthFlma2O2X
5lKspyQNoU5G1gS68jaaoWq67fyQi0a3dIQ8UcfnmaeSQ7AoG5doG1i25mBwAwBBVq9E8GXwtdJO
m67YlJ1iaWKWWeM7kBXeTsbdgMw+YLkB1GeTQBx8PjbT9Nhggjh+2x3EwF1NH5hEcu8k7UIHVWOB
xyOc9K2fEtpoF4z2Edl5k0sQliXyvKlMRU5JBX72Sc8ZUj1BNatxqVneW8KO8zXO1WmmBj2yNkjf
lRgbgcntgLg81zOq/D2OaZYhbw21lCYpDN5ikhAikuV2khcoRtJAO04KjOQCv4b8XDRdNuIrSyhv
pZJVjmmnXA89mUKwZDtCttlO35R94BiAAOl1PQtO1bypbXesbJ1yFL4UqQ27HUnqoyTtGcYNaXhv
wjdyfD8awjpa6TDfRwPM0gMssxV27AAHbGuQzB8MpOQ240NSuLrWNIvLMWlxKVguZN/lmZ2TaCGL
vtITOTy21N3ZSQADkNe02Pwr4baDQ7OGKONSqrbqixRxlGwy4OAMYx9AADkAfqR4L8QN4u8HaFrj
2psX1OwgvWtS+/yTJGrlN2BuxuxnAzjoK/NObR7nUvD8tnd30kyWTfZrW3DMQsCOTh2BBO8MrcAA
bEwDllr7t/Zb1+XXvgroQu7r7VqVmZbS7BZ2MThyyx5cknbG0Y9MY6dAAesUUUUAFFFFABXlX7NP
/JOtX/7HPxZ/6kOo16rXlX7NP/JOtX/7HPxZ/wCpDqNAHqtFFFABRRRQB89ftuaPcN8I18QabbKd
X0Wd/KvBGpkhjuIZLd13bldUdpYgwTO4AAgjJHw/p9rFoiW0s+pXms3V3i1la9cyT3koDNJdTFQ2
JHJctI+SX4LZ+U/o7+0docPiD4E+ObeffiDSpr5BHKYyZLcefGCwBIUvEoOBnGa/MubR2s5m1RtW
OnwzFzLZmcC5MmSgmBwxQsqLycjKDAQ4BAL91Cy3mk6Npaahq1/DaKbcrMJrmdJJ444/LZiTM3z5
ZcyEbQDGWlQPo+IGTwzeWllctper6rbgeVNbuZLOIvGpaGONlaQqizQwq7TMY442DGQOGbz/AMTQ
T69azafa20Wp3159ou4k1HT/ALZ9njVCk42qw8wqJBkK77POII2yYc8QeKNG+E/ijxLrOuR32pRS
WLW+keDLqVba9tr3zAzPNcRxQ/bVVmkCb4t0kUibZD5MbEA1W8fw+JPFV54K06zSHWNNntVYQgQx
TSXPlrbW8SxlQW3sNoRAWMrZLlgFqx6hFpsNqljdafqxDS/apPKmWSB2DLH5L7vKkQxMG+5uMgk3
DYgE3qn7B3w//Z80H4C6V4x8cQ2d9451C7nl1W51wTS3Ow3LfZtkC53RvGsLkjcC8gJZsKBL8Uvi
Z8PfH2n3Z8CeB7bTLa3gQWeqXlrEqzRqjOwZE3NIytIEG9iFHJU5yADzHQb7UbbRLiWXT71WkxDe
XkEZVJYS6xmQrsLKD8m0MFJxwX78nf61qNndILOe5050MU4vLGSSC6haN8IAUYsqgRt82A6jzTGG
K87Qs9XuPEKapZC6u7KK1+zS2lyZpHt22qFACgFdyhRt5A+UBDlmareaa15cNrNvPPa3tuJpGtvK
k8uCB4FeEh1kVfMbaY/uxoMbvmaQBQCbT5o49NjvIpwsccMdvGmnxtJbGI8ou193AZc7+pDfxcLV
s6XPdxm5gv8AKFlhRUJkG6PKyEyFwsi/K4G3BDMvykAZs6TpU9naaney3Wm7riOUR3iLI0kwDedH
FG0cbYkMciorYIBU5ZR81U/APguHw613dTvFqSSQx2Vp9ujNssBTziTJbs7BQokRTIqAARtt4baA
DRbwWvhcDxHFLHp0t6YbTULi/mmtxN80cSMA21Qd0kbiMLh2V0cqCr13t5CuIHntobzT4lFzC6wR
faWjEEqSAlg3lrtLfdIB299iOcK80O1kuILho450UKkLTRNcxrnzHbCllPmR5wG/hAYDGQE9S0f4
e+Kdd1aGx0fw34kmspITd2t3Bo6w2Woyum/zxdSyoIwpMq/OuZWcOpIVDKAebeJtJv47fTbnRorG
W1vGE0GoC4bzPKRA2ERoyHWdHY7zk8xlc7nanWPiBNQkkGpR3FxazNJf2l5PCV8x2mSF2YbhvUCC
T5ghPVTnDIPonQ/2XfHmu298buy0/wAOYMa2i6hdCa5UffL+ZbnbuUsY9hUjaC25t+E2PDf7Atqy
WUPinxS1/p0NrtNlY27pNHMWZ8C5eRldA0sv/LFWfcN5IVVAB8rXb3lutzDZK8lmZvNXd5cZgJAZ
2BYL/EeMjO1WXDdK2/DOn6T4g1i7iv4Lh988d2ZLHzEZ9u35ZNrhtoYx5Pckgr0x9xaD+yf8P9Js
vs95aXuuMru0c19dFGiVgMxqIBGu3IZuQSC7YOCAPRdF8B+GfDeoG+0jw7pOlXph+zm5srGKGQxZ
U+XuVQduVXjp8o9KAPgPQ/h/r/xElspNP0bVdQtdWkZYtTaxkmtGgjRYYkE27ywigcMSMgbQcJgf
YX7MXhXxX4G+E9n4f8XWNnp99p9zNHbR2TIym3Zt6k7DtB3O4wAMAD6n1iigAooooAKKKKAPmH9u
jwiNW8N+Fdd81d2n3k1n9n2bnk89A2VJyvBgXhlPByCCMN8jtfS6gt5DG7RtI8SxSxxF1jxkksuf
mTjac4A2kdckfoP+0j4Xg8T/AAl1YyadDf3OmtHqNvJKE32pjb97NGzkbGELTKSCCVZ1/iIPwz4g
s47UQ3J89ZZIzDCi3LMpZgGVcKrbvug7yCRk464IBz17pE82nyBp/KOpuYbbO0AA/vJZNpXcBv3f
KN+7evq22fwbYyho9Kub27miuLFFEtvcIyLsKAKAynI2B+P4sYOOcM8N6bDJc21nea9dWEJtXhmm
jSSUZTbHDGJJZGLkKA5dlb7ig7s7ieKJLCw/feH7WaKORiPMnKQttePDOQuM8/MGIIxnPLUAUJLC
3877Hd6XKturNGY/N2eXGrRgYWNB824kYJb72OvXrbf7NfFbdruDduEkcC7vJk5UFC4KkjJxkMpA
LFSMhhzOoQ31nqz3l/aXG1fO8qSeHyfMKFmABf7q4YfKOc8dcGu68CNFqaRR29ik93NfCO1iMcdx
s3fJGjr8oYnaAAc9TgDacAGnrXibVfFUMUJu1trVnlW1hsR+5iEgXO0MofYiLGirkkIiqQBjOcNJ
tZPKs7u181beVr+aFZZpQ8cwjKpKgJG1thyAA5MpOQTmvUfD/wAGfGev7r1tHura6s/LBjv0G+aR
42/eZm2LIVxGSQcA4AHDY7bT/wBnzxrrWtLdapqNjpenXDtdXEAlaaVLlixkdY0VY8MVjP392CQT
hUVQD59gh03VPE2l22oSx2kF9cwxSXUhVY4PNba5Yg4X5iOeRwOxr6L/AGMPEElxonivQZIZv9Av
IbxbmQ8OJ4tpUD2aBj1/jHA4FaehfslaVYrqY1DX7ycXkawn7BAlv+7DBir7zJv+ZI2HTBXjtj07
wp8KfCvgjVptT0XShZX00Rgkm8+WQlCwYj52I5ZQfr9TQB1tFFFABRRRQAV5V+zT/wAk61f/ALHP
xZ/6kOo16rXlX7NP/JOtX/7HPxZ/6kOo0Aeq0UUUAFFFFABX5EapZXfhS48YaDe7tR1TTpnspm09
UWISQSssu0bgnJjiCl1jJLgspAzX671+fnxe+AninXv2nfEV14V8B6pNapfJe/bjsitLqKW2iedl
nnIUyG4dl2AkptYqMbgoB8NeE/Aup6T8SLrxK2nzzaZrTSx+Vrlml3caZHLcsD5boX58mQIWYIFM
0zFXWFXk9lvrZrG1e6vdTttTvri0jmupYoR5TfPKoRgyk4YxMVUMTnblmANfSnhf9h7xzetE9/da
T4ftJmIdY7hmvIAZPnO1UaNjtUEASfMNuSpDA974d/4J66Bas8uueMNW1G8UItvd6fbxWzoA25gw
kEyMDhOirjaf9kKAfG9r4Tkj1TWHZI7fS5RbyyxvfqS0jBY5BhRlRgIfmZzlsZAK5VtF/s9pJJLR
1bakbXDDasjCIBNyhU+4ikY+bPlkA84r9FfCv7JHwy8L2OmWx0STWG05laGTVLqSUHYzGMNGCImC
hyBlOcAtk5J9Q0Xwvovhtp20nSLDS2nCCU2VskJkCDCBtoGdo4Geg6UAfmf8P/gv4q1zWoDH4Y1y
+S/aG40u4XTJLW2RB50ro900ITa6Ku2TzAvLIS/noB6npf7E/jzxdufUr2LwrarPuS3up0uJCXEY
kkKRh1KhWmURiVBkkfKpBr7xooA+W/Dv7Cemaf4ivNT1TxZc3QuUlymnWKWrrI4Kh9zNIGIVpB8y
luUwy7SG9D8K/snfDbwvHYu+jPrV/aYA1DVJ2kllw+5RIq7Y2A+UY2chVznFdJ8fPE2p+Cvgf8QP
EGjXP2PV9K0C/vbO48tX8qaO3d0bawKnDKDggg45Brm/GHxl1jwf4b+HVvp2jWviLxR4tkW1t01L
Uf7NtA62clzK8sywylflibCrG2SR0AJEp6tdrfiO23nf8D0rw/4Q0LwmkyaHomnaMsxBlXT7SOAP
gkjdsAzyzHn+8fWtavlC3/btbW9Kh1bRfA8dxptvbaNLqbX+uJBNDJqN8bONYESGQTojJIxcsgYB
doO4kdx8VNU8W658fPC/gvRfHeqeCNKuvDOq6vPNpNpYTPJPBcWUcW83dvMAgFxJkLtJ454qutvX
8Fdi2/D8T3fpS18J6l+1R8S/EXwvgn0SRbDxTeaT4Zka8ee3htVN9qk9m9xbxtaTlWkESMDI0qKk
isseUIkPA/7Y/wARvB32vT/EvhjUfiD4jvNR1iSGx0fzrpLazsLw2higFlpW95mcHHnhY22hmlh3
iMNau3r+BTi1v5fifddLXy74o/bQ1Pw6vjS8Hw9ebSdB1mx8PW7Pf3Bvbm+u4bWWMSWsVnI8Uarc
MHKmWQGMBY3LYXM0v9uLX7661IXXwovNGttEl0ePWDq99cWNwq39/LZpLbW89mjzRho1cGQQllc5
Csu0iTlt/V/+HJeiufWtFfM+pftlyaJ4b8ReLL7wdF/wiVlHqw02S21yF9TvJtPnEEsclkyK0YZ9
xBjebaq5kEeQD6P8BfjFqfxg0XVLnV/B2peEbuxuFiAu7a8jtrtGjDrLbvd2trK6jJVt0K4ZTjcM
MUtdgeh6jRRRQAUUUUAU9Y0m117Sb3TL6Lz7G9ge2ni3Fd8bqVZcggjIJ5BBr4HT4FeOvG6yTWnh
nVLe+sYWSGW63WGwurAMnnbdxypyFOR8pOMg1+glFAHxboP7FnjG+v7GTWNV0ezsmf7RK2+We6jJ
Qny2RQqPhjgkSepyeh9dh/ZH8NXGk29lqWpXk7WzqYJbWONNirtwMSLIScr1z0PTvXutFAHBQ/Af
wBFqUt+/haxu7iRGRxehriNgWRsmOQsu4GNMNjIwcEZOex0jRtP8P6dDp+l2NtpthCCIrWzhWKKP
JJO1VAA5JPHc1cooAKKKKACiiigAooooAKKKKACuJ+EPgm+8A+FL/TNQlt5p5/EGuaqrWzMyiK81
W7vIlJZQdwjuEDDGAwYAkYJ7aigAooooAKKKKACiiigAooooAKKKKACiiigCpquk2Wu6Zd6bqVpB
qGn3kTQXNpdRLJFNGwKsjowIZSCQQRgg1xNv+zz8K7Xw5d+H4Php4Qh0C8mS5uNKj0G1W1mlQYSR
4hHtZlBOGIyO1egUtAHiPxC/ZF8D/EfxzoviW+a8sm0uCztY9Nso7UWxhtZ/PgjUvA0tuofG4W0k
W8KofcFGPQPG/wAIfAnxMmtJfGHgvw94slswy2z65pUF6YA2CwQyo23O1c464HpXXUlAGBdfD/wv
fTGW58OaTcSsltEZJbGJmKW8hkt1yV6ROS6D+BjlcGs/WPg34B8RWtrbat4H8Oapb2l3JqFvDe6T
bzJDcyOXknQMhCyMxLM45JOSc12FFAHPX3w78Kapp+t2N74Z0e7sdccS6rbT2ETx6g4VUDTqVxKd
qIuXzwijsKp6f8IfAuk6e1hY+C/D1lYNHbxNa2+lQRxFIJTLApUJjEcjM6D+FmLDBOa62igDmIPh
f4Ntdb1jWYfCehxavrMRg1PUE06EXF9GRgpPIF3SLjsxIq14O8CeGvh3pP8AZXhTw9pXhnS/MaX7
Do9lFaQbzjLbI1C5OBk47Vu0UAFFFFAH/9k=</Data></Thumbnail></Binary></metadata>