forked from bytedance/res-adapter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
287 lines (253 loc) · 8.15 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
os.system("pip install -U peft")
import random
import gradio as gr
import numpy as np
import PIL.Image
# import spaces
import torch
from diffusers import (
StableDiffusionXLPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
DESCRIPTION = """
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024.
"""
if not torch.cuda.is_available():
DESCRIPTION += (
"\n<h1>Running on CPU 🥶 This demo does not work on CPU.</a> instead</h1>"
)
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# base = "stabilityai/stable-diffusion-xl-base-1.0"
base = "/mnt/bn/automl-aigc/chengjiaxiang/models/diffusers/dreamshaper-xl-1-0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Load resadapter
pipe.load_lora_weights(
hf_hub_download(
repo_id="jiaxiangc/res-adapter",
subfolder="sdxl-i",
filename="resolution_lora.safetensors",
),
adapter_name="res_adapter",
)
pipe = pipe.to(device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# @spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 4,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
print(f'** Generating image for: "{prompt}" **')
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0])
base_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
num_inference_steps=num_inference_steps_base,
guidance_scale=guidance_scale_base,
output_type="pil",
generator=generator,
).images[0]
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
res_adapt = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
num_inference_steps=num_inference_steps_base,
guidance_scale=guidance_scale_base,
output_type="pil",
generator=generator,
).images[0]
return [res_adapt, base_image]
examples = [
"A girl smiling",
"A boy smiling",
"A realistic photograph of an astronaut in a jungle, cold color palette, detailed, 8k",
]
theme = gr.themes.Base(
font=[
gr.themes.GoogleFont("Libre Franklin"),
gr.themes.GoogleFont("Public Sans"),
"system-ui",
"sans-serif",
],
)
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
container=False,
placeholder="Enter your prompt",
)
run_button = gr.Button("Generate")
# result = gr.Gallery(label="Left is Base and Right is Lora"),
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="blur, cartoon, bad, face, painting",
visible=False,
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=0,
maximum=1,
step=0.1,
value=0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=None,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
],
outputs=gr.Gallery(label="Right is Base and Left is ResAdapt with SDXL-ByteDance"),
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20, api_open=False).launch(show_api=False)