-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathframework.py
338 lines (271 loc) · 11.9 KB
/
framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# coding=utf-8
"""
Python module for performing adversarial training for malware detection
"""
import os
import torch
import random
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from utils.utils import load_parameters, stack_tensors
from datasets.datasets import load_data
from inner_maximizers.inner_maximizers import inner_maximizer
from nets.ff_classifier import build_ff_classifier
from blindspot_coverage.covering_number import CoveringNumber
import losswise
import time
import json
import numpy as np
# Step 1. Load configuration
parameters = load_parameters("parameters.ini")
is_cuda = eval(parameters["general"]["is_cuda"])
if is_cuda:
os.environ["CUDA_VISIBLE_DEVICES"] = parameters["general"]["gpu_device"]
assertion_message = "Set this flag off to train models."
assert eval(parameters['dataset']['generate_feature_vector_files']) is False, assertion_message
log_interval = int(parameters["general"]["log_interval"])
num_epochs = int(parameters["hyperparam"]["ff_num_epochs"])
is_losswise = eval(parameters["general"]["is_losswise"])
is_synthetic_dataset = eval(parameters["general"]["is_synthetic_dataset"])
training_method = parameters["general"]["training_method"]
evasion_method = parameters["general"]["evasion_method"]
experiment_suffix = parameters["general"]["experiment_suffix"]
experiment_name = "[training:%s|evasion:%s]_%s" % (training_method, evasion_method,
experiment_suffix)
print("Training Method:%s, Evasion Method:%s" % (training_method, evasion_method))
seed_val = int(parameters["general"]["seed"])
random.seed(seed_val)
torch.manual_seed(seed_val)
np.random.seed(seed_val)
if is_losswise:
losswise_key = parameters['general']['losswise_api_key']
if losswise_key == 'None':
raise Exception("Must set API key in the parameters file to use losswise")
losswise.set_api_key(losswise_key)
session = losswise.Session(tag=experiment_name, max_iter=200)
graph_loss = session.graph("loss", kind="min")
graph_accuracy = session.graph("accuracy", kind="max")
graph_coverage = session.graph("coverage", kind="max")
graph_evasion = session.graph("evasion", kind="min")
evasion_iterations = int(parameters['hyperparam']['evasion_iterations'])
save_every_epoch = eval(parameters['general']['save_every_epoch'])
train_model_from_scratch = eval(parameters['general']['train_model_from_scratch'])
load_model_weights = eval(parameters['general']['load_model_weights'])
model_weights_path = parameters['general']['model_weights_path']
# Step 2. Load training and test data
train_dataloader_dict, valid_dataloader_dict, test_dataloader_dict, num_features = load_data(
parameters)
# set the bscn metric
num_samples = len(train_dataloader_dict["malicious"].dataset)
bscn = CoveringNumber(num_samples, num_epochs * num_samples,
train_dataloader_dict["malicious"].batch_size)
if load_model_weights:
print("Loading Model Weights From: {path}".format(path=model_weights_path))
model = torch.load(model_weights_path)
else:
# Step 3. Construct neural net (N) - this can be replaced with any model of interest
model = build_ff_classifier(
input_size=num_features,
hidden_1_size=int(parameters["hyperparam"]["ff_h1"]),
hidden_2_size=int(parameters["hyperparam"]["ff_h2"]),
hidden_3_size=int(parameters["hyperparam"]["ff_h3"]))
# gpu related setups
if is_cuda:
torch.cuda.manual_seed(int(parameters["general"]["seed"]))
model = model.cuda()
# Step 4. Define loss function and optimizer for training (back propagation block in Fig 2.)
loss_fct = nn.NLLLoss(reduce=False)
optimizer = optim.Adam(model.parameters(), lr=float(parameters["hyperparam"]["ff_learning_rate"]))
def train(epoch):
model.train()
total_correct = 0.
total_loss = 0.
total = 0.
current_time = time.time()
if is_synthetic_dataset:
# since generation of synthetic data set is random, we'd like them to be the same over epochs
torch.manual_seed(seed_val)
random.seed(seed_val)
for batch_idx, ((bon_x, bon_y), (mal_x, mal_y)) in enumerate(
zip(train_dataloader_dict["benign"], train_dataloader_dict["malicious"])):
# Check for adversarial learning
mal_x = inner_maximizer(
mal_x, mal_y, model, loss_fct, iterations=evasion_iterations, method=training_method)
# stack input
if is_cuda:
x = Variable(stack_tensors(bon_x, mal_x).cuda())
y = Variable(stack_tensors(bon_y, mal_y).cuda())
else:
x = Variable(stack_tensors(bon_x, mal_x))
y = Variable(stack_tensors(bon_y, mal_y))
# forward pass
y_model = model(x)
# backward pass
optimizer.zero_grad()
loss = loss_fct(y_model, y).mean()
loss.backward()
optimizer.step()
# predict pass
_, predicted = torch.topk(y_model, k=1)
correct = predicted.data.eq(y.data.view_as(predicted.data)).cpu().sum()
# metrics
total_loss += loss.data[0] * len(y)
total_correct += correct
total += len(y)
bscn.update_numerator_batch(batch_idx, mal_x)
if batch_idx % log_interval == 0:
print("Time Taken:", time.time() - current_time)
current_time = time.time()
print(
"Train Epoch ({}) | Batch ({}) | [{}/{} ({:.0f}%)]\tBatch Loss: {:.6f}\tBatch Accuracy: {:.1f}%\t BSCN: {:.12f}".
format(epoch, batch_idx, batch_idx * len(x),
len(train_dataloader_dict["malicious"].dataset) +
len(train_dataloader_dict["benign"].dataset),
100. * batch_idx / len(train_dataloader_dict["benign"]), loss.data[0],
100. * correct / len(y), bscn.ratio()))
if is_losswise:
graph_accuracy.append(epoch, {
"train_accuracy_%s" % experiment_name: 100. * total_correct / total
})
graph_loss.append(epoch, {"train_loss_%s" % experiment_name: total_loss / total})
graph_coverage.append(epoch, {"train_coverage_%s" % experiment_name: bscn.ratio()})
model_filename = "{name}_epoch_{e}".format(name=experiment_name, e=epoch)
if save_every_epoch:
torch.save(model, os.path.join("model_weights", model_filename))
def check_one_category(category="benign", is_validate=False, is_evade=False,
evade_method='dfgsm_k'):
"""
test the model in terms of loss and accuracy on category, this function also allows to perform perturbation
with respect to loss to evade
:param category: benign or malicious dataset
:param is_validate: validation or testing dataset
:param is_evade: to perform evasion or not
:param evade_method: evasion method (we can use on of the inner maximier methods), it is only relevant if is_evade
is True
:return:
"""
model.eval()
total_loss = 0
total_correct = 0
total = 0
evasion_mode = ""
if is_synthetic_dataset:
# since generation of synthetic data set is random, we'd like them to be the same over epochs
torch.manual_seed(seed_val)
random.seed(seed_val)
if is_validate:
dataloader = valid_dataloader_dict[category]
else:
dataloader = test_dataloader_dict[category]
for batch_idx, (x, y) in enumerate(dataloader):
#
if is_evade:
x = inner_maximizer(
x, y, model, loss_fct, iterations=evasion_iterations, method=evade_method)
evasion_mode = "(evasion using %s)" % evade_method
# stack input
if is_cuda:
x = Variable(x.cuda())
y = Variable(y.cuda())
else:
x = Variable(x)
y = Variable(y)
# forward pass
y_model = model(x)
# loss pass
loss = loss_fct(y_model, y).mean()
# predict pass
_, predicted = torch.topk(y_model, k=1)
correct = predicted.data.eq(y.data.view_as(predicted.data)).cpu().sum()
# metrics
total_loss += loss.data[0] * len(y)
total_correct += correct
total += len(y)
print("{} set for {} {}: Average Loss: {:.4f}, Accuracy: {:.2f}%".format(
"Valid" if is_validate else "Test", category, evasion_mode, total_loss / total,
total_correct * 100. / total))
return total_loss, total_correct, total
def test(epoch, is_validate=False):
"""
Function to be used for both testing and validation
:param epoch: current epoch
:param is_validate: is the testing done on the validation dataset
:return: average total loss, dictionary of the metrics for both bon and mal samples
"""
# test for accuracy and loss
bon_total_loss, bon_total_correct, bon_total = check_one_category(
category="benign", is_evade=False, is_validate=is_validate)
mal_total_loss, mal_total_correct, mal_total = check_one_category(
category="malicious", is_evade=False, is_validate=is_validate)
# test for evasion on malicious sample
evade_mal_total_loss, evade_mal_total_correct, evade_mal_total = check_one_category(
category="malicious", is_evade=True, evade_method=evasion_method, is_validate=is_validate)
total_loss = bon_total_loss + mal_total_loss
total_correct = bon_total_correct + mal_total_correct
total = bon_total + mal_total
dataset_type = "valid" if is_validate else "test"
print("{} set overall: Average Loss: {:.4f}, Accuracy: {:.2f}%".format(
dataset_type, total_loss / total, total_correct * 100. / total))
if is_losswise:
graph_accuracy.append(
epoch, {
"%s_accuracy_%s" % (dataset_type, experiment_name): 100. * total_correct / total
})
graph_loss.append(epoch, {
"%s_loss_%s" % (dataset_type, experiment_name): total_loss / total
})
graph_evasion.append(
epoch, {
"%s_evasion_%s" % (dataset_type, experiment_name):
100 * (evade_mal_total - evade_mal_total_correct) / evade_mal_total
})
metrics = {
"bscn_ratio": bscn.ratio(),
"mal": {
"total_loss": mal_total_loss,
"total_correct": mal_total_correct,
"total": mal_total,
"evasion": {
"total_loss": evade_mal_total_loss,
"total_correct": evade_mal_total_correct,
"total": evade_mal_total
}
},
"bon": {
"total_loss": bon_total_loss,
"total_correct": bon_total_correct,
"total_evade": None,
"total": bon_total
}
}
print(metrics)
return (bon_total_loss + max(mal_total_loss, evade_mal_total_loss)) / total, metrics
if __name__ == "__main__":
if not os.path.exists("result_files"):
os.mkdir("result_files")
_metrics = None
session = None
if train_model_from_scratch:
best_valid_loss = float("inf")
for _epoch in range(num_epochs):
# train
train(_epoch)
# validate
valid_loss, _ = test(_epoch, is_validate=True)
# keep the best parameters w.r.t validation and check the test set
if best_valid_loss > valid_loss:
best_valid_loss = valid_loss
_, _metrics = test(_epoch, is_validate=False)
bscn_to_save = bscn.ratio()
with open(os.path.join("result_files", "%s_bscn.txt" % experiment_name), "w") as f:
f.write(str(bscn_to_save))
torch.save(model, os.path.join("helper_files", "%s-model.pt" % experiment_name))
elif _epoch % log_interval == 0:
test(_epoch, is_validate=False)
else:
_, _metrics = test(0)
with open(os.path.join("result_files", experiment_name + ".json"), "w") as result_file:
json.dump(_metrics, result_file)
if is_losswise:
session.done()