-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
204 lines (168 loc) · 9.65 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import argparse
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
def detect(save_img=False):
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Initialize model
model = Darknet(opt.cfg, imgsz)
# Load weights, strict=False
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'], strict=False)
else: # darknet format
load_darknet_weights(model, weights)
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Eval mode
model.to(device).eval()
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Export mode
if ONNX_EXPORT:
model.fuse()
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
torch.onnx.export(model, img, f, verbose=False, opset_version=11,
input_names=['images'], output_names=['classes', 'boxes'])
# Validate exported model
import onnx
model = onnx.load(f) # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return
# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = torch_utils.time_synchronized()
# to float
if half:
pred = pred.float()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections, 결과 처리 부분: 각 이미지에 대해 탐지된 객체들을 처리합니다.
for i, det in enumerate(pred): # 각 이미지 i에 대한 탐지된 객체들(det)을 반복
if webcam: # batch_size >= 1, 웹캠 입력인 경우
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else: # 이미지 파일 입력인 경우
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name) # 결과 이미지 저장 경로
s += '%gx%g ' % img.shape[2:] # 이미지 크기 출력 문자열
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # 이미지 크기에 따른 정규화 계수
if det is not None and len(det): # 탐지된 객체가 있을 경우
# 탐지된 바운딩 박스 크기를 원본 이미지 크기로 조정
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results, 결과 출력
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # 클래스별 탐지된 객체 수
s += '%g %ss, ' % (n, names[int(c)]) # 클래스명과 객체 수를 문자열에 추가
# Write results, 바운딩 박스 및 레이블 추가
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file, 텍스트 파일에 저장할지 여부를 확인합니다.
# 바운딩 박스 좌표를 정규화된 형태로 변환합니다.
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# 텍스트 파일에 레이블 포맷에 맞게 기록합니다.
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format, 레이블 포맷
if save_img or view_img: # Add bbox to image
img_pil = None # PIL 이미지 초기화
for det in pred:
label = '%s, 정확도: %.2f' % (names[int(cls)], conf) # 레이블 및 신뢰도
print(f"Before plot_one_box: {img_pil}")
img_pil = plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) # 바운딩 박스 및 레이블 추가
print(f"After plot_one_box: {img_pil}")
# 모든 검출을 처리한 후 최종 이미지(img_pil) 저장
if img_pil is not None and save_img:
img_pil.save(save_path, 'JPEG') # 결과 이미지 저장
# 처리 시간 출력 (추론 + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit, 'q' 키를 누르면 종료
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
img_pil.save(save_path, 'JPEG') # 결과 이미지 저장
# cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/403food.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/best_403food_e200b150v2.pt', help='weights path')
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=256, help='inference size (pixels)') # 해상도 이슈 수정 (접시)
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--fou rcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
opt.names = check_file(opt.names) # check file
print(opt)
with torch.no_grad():
detect()