-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_promoter_finetuning.py
273 lines (238 loc) · 13.3 KB
/
run_promoter_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import json
import logging
import os
from pathlib import Path
import torch
from torch.utils.data import DataLoader, DistributedSampler
import transformers
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, matthews_corrcoef
from lm_experiments_tools import Trainer, TrainerArgs, get_optimizer
from lm_experiments_tools.utils import get_cls_by_name, collect_run_configuration
from lm_experiments_tools.utils import get_git_diff
import lm_experiments_tools.optimizers as optimizers
from downstream_tasks.promoter_prediction.dataset import EPDnewPromoterDataset
import horovod.torch as hvd
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO)
logger = logging.getLogger(__name__)
# if CUDA_VISIBLE_DEVICES is not set make all gpus visible
if os.environ.get('CUDA_VISIBLE_DEVICES', None) is None:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in range(torch.cuda.device_count())])
logger.info(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
# first call to torch.cuda.device_count() sets visible gpus, following calls will not change the result
logger.info(f"CUDA DEVICE COUNT: {torch.cuda.device_count()}")
hvd.init()
torch.set_num_threads(4)
torch.cuda.set_device(hvd.local_rank())
parser = HfArgumentParser(TrainerArgs)
parser.add_argument('--data_path', type=str, help='path the training data, could be a folder')
parser.add_argument('--valid_data_path', type=str, help='path the valid data, could be a folder')
parser.add_argument('--test_data_path', type=str, help='path the test data, could be a folder')
parser.add_argument('--validate_only', action='store_true', default=False,
help='Skip training and run only validation. (default: False)')
parser.add_argument('--seed', type=int, default=42, help='random seed')
# bert data args
parser.add_argument('--input_seq_len', type=int, default=128, help='input sequnce length (default: 128).')
parser.add_argument('--data_n_workers', type=int, default=2, help='number of dataloader workers (default: 2)')
parser.add_argument('--pad_to_max_seq_len', action='store_true', default=False,
help='pad all examples to input_seq_len (default: False)')
parser.add_argument('--truncate', type=str, default='right',
help='truncate input sequence to input_seq_len from right|mid|left (default: right)')
# model args
parser.add_argument('--model_cfg', type=str, help='path to model configuration file (default: None)')
parser.add_argument('--model_cls', type=str, default='transformers:BertForPreTraining',
help='model class name to use (default: transformers:BertForPreTraining)')
# tokenizer
parser.add_argument('--tokenizer', type=str, default=None, help='path or name of pre-trained HF Tokenizer')
parser.add_argument('--bpe_dropout', type=float, default=None, help='bpe dropout value, used during training only')
# optimizer args
parser.add_argument('--optimizer', type=str, default='AdamW', help='optimizer name: AdamW, Adafactor. (default: AdamW)')
parser.add_argument('--weight_decay', type=float, default=0.0, help='optimizer weight decay (default: 0.0)')
parser.add_argument('--scale_parameter', action='store_true', default=False,
help='Adafactor scale_parameter (default: False)')
parser.add_argument('--relative_step', action='store_true', default=False,
help='Adafactor relative_step (default: False)')
parser.add_argument('--warmup_init', action='store_true', default=False,
help='Adafactor warmup_init (default: False)')
parser.add_argument('--body_lr_multiplier', type=float, default=1.0,
help='multiplier to lr to set learning rate for pre-trained body (default: 1.0)')
if __name__ == '__main__':
args = parser.parse_args()
if hvd.rank() == 0:
logger.info(f'hvd size: {hvd.size()}')
logger.info(f'FP16: {args.fp16}')
if hvd.rank() == 0 and args.model_path is None:
logger.warning('model_path is not set: config, logs and checkpoints will not be saved.')
# create model path and save configuration
if hvd.rank() == 0 and args.model_path is not None:
model_path = Path(args.model_path)
if not model_path.exists():
Path(model_path).mkdir(parents=True)
args_dict = collect_run_configuration(args)
# todo: if model path exists and there is config file, write new config file aside
json.dump(args_dict, open(model_path/'config.json', 'w'), indent=4)
open(model_path / 'git.diff', 'w').write(get_git_diff())
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
if args.bpe_dropout is not None and args.bpe_dropout > 0.0:
train_tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
if hasattr(train_tokenizer._tokenizer.model, 'dropout'):
train_tokenizer._tokenizer.model.dropout = args.bpe_dropout
elif hvd.rank() == 0:
logger.warning('BPE dropout is not set as tokenizer does not support it.')
else:
train_tokenizer = tokenizer
per_worker_batch_size = args.batch_size * args.gradient_accumulation_steps
global_batch_size = per_worker_batch_size * hvd.size()
kwargs = {'pin_memory': True, 'num_workers': args.data_n_workers}
if not args.pad_to_max_seq_len:
pad_token_ids = {'input_ids': tokenizer.pad_token_id, 'token_type_ids': 0, 'attention_mask': 0}
pad_to_divisible_by = 64
# could be used to pad on-the-fly
def collate_fn(batch):
feature_keys = ['input_ids', 'token_type_ids', 'attention_mask']
padded_batch = {k: [] for k in feature_keys}
max_seq_len = max([len(el['input_ids']) for el in batch])
max_seq_len += (
(pad_to_divisible_by - max_seq_len % pad_to_divisible_by)
if max_seq_len % pad_to_divisible_by != 0
else 0
)
for k in feature_keys:
for i, el in enumerate(batch):
padded_batch[k] += [
np.concatenate(
[
batch[i][k],
np.array([pad_token_ids[k]] * max(0, max_seq_len - len(el[k])), dtype=np.int64),
]
)
]
for k in padded_batch:
padded_batch[k] = torch.from_numpy(np.stack(padded_batch[k]))
padded_batch['labels'] = torch.tensor([el['labels'] for el in batch])
return padded_batch
kwargs['collate_fn'] = collate_fn
# get train dataset
if hvd.rank() == 0:
logger.info(f'preparing training data from: {args.data_path}')
data_path = Path(args.data_path).expanduser().absolute()
train_dataset = EPDnewPromoterDataset(data_path, train_tokenizer, x_field='sequence',
label_field='promoter_presence', max_seq_len=args.input_seq_len,
pad_to_max=args.pad_to_max_seq_len, truncate=args.truncate)
# shuffle train data each epoch (one loop over train_dataset)
train_sampler = DistributedSampler(train_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=True,
drop_last=False, seed=args.seed)
train_dataloader = DataLoader(train_dataset, batch_size=per_worker_batch_size, sampler=train_sampler, **kwargs)
# get validation dataset
if args.valid_data_path:
if hvd.rank() == 0:
logger.info(f'preparing validation data from: {args.valid_data_path}')
valid_data_path = Path(args.valid_data_path).expanduser().absolute()
valid_dataset = EPDnewPromoterDataset(valid_data_path, tokenizer, x_field='sequence',
label_field='promoter_presence', max_seq_len=args.input_seq_len,
pad_to_max=args.pad_to_max_seq_len, truncate=args.truncate)
valid_sampler = DistributedSampler(valid_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=False)
valid_dataloader = DataLoader(valid_dataset, batch_size=per_worker_batch_size, sampler=valid_sampler, **kwargs)
if args.valid_interval is None:
args.valid_interval = args.log_interval
else:
valid_dataloader = None
if hvd.rank() == 0:
logger.info('No validation data is used.')
# get test dataset
if args.test_data_path:
if hvd.rank() == 0:
logger.info(f'preparing test data from: {args.test_data_path}')
test_data_path = Path(args.test_data_path).expanduser().absolute()
test_dataset = EPDnewPromoterDataset(test_data_path, tokenizer, x_field='sequence',
label_field='promoter_presence', max_seq_len=args.input_seq_len,
pad_to_max=args.pad_to_max_seq_len, truncate=args.truncate)
test_sampler = DistributedSampler(test_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=per_worker_batch_size, sampler=test_sampler, **kwargs)
# define model
model_cfg = AutoConfig.from_pretrained(args.model_cfg)
# classification with two labels
model_cfg.num_labels = 2
model_cls = get_cls_by_name(args.model_cls)
if hvd.rank() == 0:
logger.info(f'Using model class: {model_cls}')
model = model_cls(config=model_cfg)
# define optimizer
optimizer_cls = get_optimizer(args.optimizer)
if optimizer_cls is None:
raise RuntimeError(f'{args.optimizer} was not found in optimizers, torch.optim, transformers.optimization')
if hvd.rank() == 0:
logger.info(f'Using optimizer class: {optimizer_cls}')
# todo: group optimizer params
if optimizer_cls in [transformers.optimization.Adafactor, optimizers.Adafactor]:
# https://github.com/huggingface/transformers/pull/9751/files -> transformers 4.3.0
optimizer = optimizer_cls(model.parameters(), lr=args.lr,
scale_parameter=args.scale_parameter,
relative_step=args.relative_step,
warmup_init=args.warmup_init,
weight_decay=args.weight_decay)
if args.body_lr_multiplier != 1.0:
raise RuntimeError('Adafactor optimizer and body_lr_multiplier != 1.0 is not supported')
else:
if args.body_lr_multiplier == 1.0:
optimizer = optimizer_cls(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = optimizer_cls(
[{'params': model.bert.parameters(), 'lr': args.lr * args.body_lr_multiplier},
{'params': model.classifier.parameters()}],
lr=args.lr, weight_decay=args.weight_decay)
def keep_for_metrics_fn(batch, output):
# select data from batch and model output that would be used to compute metrics
data = {}
data['labels'] = batch['labels']
data['predictions'] = torch.argmax(output['logits'].detach(), dim=-1)
return data
def metrics_fn(data):
# compute metrics based on stored labels, predictions, ...
metrics = {}
y, p = data['labels'], data['predictions']
# accuracy
metrics['accuracy'] = (p == y).sum() / len(y)
# f1, precision, recall, mcc
metrics['f1'] = f1_score(y, p)
metrics['f1_macro'] = f1_score(y, p, average='macro')
metrics['precision'] = precision_score(y, p)
metrics['recall'] = recall_score(y, p)
metrics['mcc'] = matthews_corrcoef(y, p)
return metrics
trainer = Trainer(args, model, optimizer, train_dataloader, valid_dataloader, train_sampler,
keep_for_metrics_fn=keep_for_metrics_fn, metrics_fn=metrics_fn)
if not args.validate_only:
# train loop
trainer.train()
# make sure all workers are done
hvd.barrier()
# run validation after training
if args.save_best:
best_model_path = str(Path(args.model_path) / 'model_best.pth')
if hvd.rank() == 0:
logger.info(f'Loading best saved model from {best_model_path}')
trainer.load(best_model_path)
if args.valid_data_path:
if hvd.rank() == 0:
logger.info('Runnning validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False)
if args.test_data_path:
if hvd.rank() == 0:
logger.info('Runnning validation on test data:')
trainer.validate(test_dataloader, split='test', write_tb=True)
else:
# run validation, do not write to tensorboard
if hvd.rank() == 0:
logger.info('Running validation on train set:')
trainer.validate(train_dataloader, write_tb=False)
if args.valid_data_path:
if hvd.rank() == 0:
logger.info('Running validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False)
if args.test_data_path:
if hvd.rank() == 0:
logger.info('Running validation on test data:')
trainer.validate(test_dataloader, split='test', write_tb=False)