-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLR_demo.py
79 lines (72 loc) · 3.12 KB
/
LR_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import matplotlib.pyplot as plt
from Loss import mse_loss
from optimizers import SGD_optimizer
from Model import Model, Dense
from dataloader import randDataGenerator, dataset_generator
from config import *
import sys
import argparse
#使用单隐层神经玩过实现线性回归演示
class Linear_regression():
def __init__(self,dataset_generator,
learning_rate=0.01,
epoch=20,
batch_size=20,
optimizer=SGD_optimizer(learning_rate=0.01),
loss="mse"):
self.model=Model([Dense(dataset_generator.shape[1]-1,1)])
self.optimizer=optimizer
self.optimizer.opt(self.model) #设置学习率
self.dataset=dataset_generator
self.epoch=epoch
self.batch_size=batch_size
self.Loss=[]
if loss=="mse":
self.loss=mse_loss(self.batch_size)
else:
print("目前只支持mse")
assert 1==0 #强制终止程序
def train(self):
iter=0
while iter<self.epoch:
print("epoch"+str(iter)+":")
np.random.shuffle(self.dataset) #随机打乱数据集顺序,
Loss_in_epoch=[]
data_list=np.split(self.dataset,self.dataset.shape[0]/self.batch_size,axis=0)
for item in data_list:
dataX=item[:,:-1].T
dataY=item[:,-1].reshape(self.batch_size,1)
original_res=self.loss.gradient(self.model.forward(dataX),dataY)
self.model.backpropagate(original_res=original_res)
Loss_in_epoch.append(self.loss.loss(self.model.forward(dataX),dataY))
print(np.mean(Loss_in_epoch))
self.Loss.append(np.mean(Loss_in_epoch))
iter=iter+1
def visualize_loss(self):
#x=np.linspace(1,self.epoch,self.epoch).astype("int8")
plt.xlabel("epoches")
plt.ylabel("Loss")
plt.plot(self.Loss, 'c-',linewidth=2)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser('Deep Neural Network')
parser.add_argument('--epoch', type=int, default=20,
help="训练轮数")
parser.add_argument('--batch_size', type=int, default=20,
help="batch_size必须能整除样本数,样本数默认1000,可在config文件中设置")
parser.add_argument('--learning_rate', type=float, default=0.01,
help="随机梯度下降学习率设置")
args = parser.parse_args()
print(args)
stdout_backup = sys.stdout
log_file = open("message_LR.log", "w")
sys.stdout = log_file
data=randDataGenerator(num_sample=num_sample,low=low,high=high)
dataset=dataset_generator(data,weight=weight,bias=bias,no_zenguang=True) #其中有一个维度为增广维度
model=Linear_regression(dataset, epoch=args.epoch, batch_size=args.batch_size,
optimizer=SGD_optimizer(learning_rate=args.learning_rate))
model.train()
log_file.close()
sys.stdout = stdout_backup
model.visualize_loss()