-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy path1_optimize_kcv.py
312 lines (248 loc) · 13.6 KB
/
1_optimize_kcv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""This script is used for training and evaluating a reinforcement learning agent for trading on the Alpaca platform.
The script uses Optuna for hyperparameter optimization, and joblib for parallel execution of trials.
The script imports various modules including joblib, optuna, datetime, pickle, sys, distutils.dir_util,
environment_Alpaca, function_CPCV, function_train_test, config_main, and sklearn.model_selection.
The script also contains a class 'bcolors' which is used to color the output text in the terminal.
The script defines a function 'print_config' which prints the configuration of the current trial including the time
frame, number of samples, number of trials, and number of splits. It also returns a timestamp used for naming the
results folder.
The function 'set_Pandas_Timedelta' is used to set the timedelta for the Pandas dataframe based on the selected time
frame.
The function 'save_best_agent' is used to save the best agent obtained from the trials. It copies the agent from the
working directory and saves it in the results folder. It also pickles the trial information to avoid errors where
params are not copied.
The function 'sample_hyperparams' is used for sampling the hyperparameters for the trials. It returns a dictionary of
the hyperparameters.
The objective function is the function that is being optimized during the trial runs. In this script, the objective
function is not explicitly defined. It is likely that the objective function is defined within the sample_hyperparams
or within the functions imported from function_CPCV and function_train_test and it is used to evaluate the
performance of the agent being trained, such as the profit or return of the agent's trading strategy over a certain
period of time. The goal of the optimization process is to find the set of hyperparameters that result in the best
performance of the objective function.
The script also includes a main function which sets up the environment, runs the trials, and saves the results.
"""
import joblib
import optuna
import datetime
import pickle
import os
import sys
from distutils.dir_util import copy_tree
from environment_Alpaca import CryptoEnvAlpaca
from function_CPCV import *
from function_train_test import *
from config_main import *
from sklearn.model_selection import KFold, StratifiedKFold
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def print_config():
print('\n' + bcolors.HEADER + '##### Launched hyperparameter optimization with K-Cross Validation #####' + bcolors.ENDC + '\n')
print('TIMEFRAME ', TIMEFRAME)
print('TRAIN SAMPLES ', no_candles_for_train)
print('TRIALS NO. ', H_TRIALS)
print('N ', N_GROUPS)
print('K groups ', K_TEST_GROUPS)
print('SPLITS ', NUMBER_OF_SPLITS)
print('\n')
print('TRAIN SAMPLES ', no_candles_for_train)
print('VAL_SAMPLES ', no_candles_for_val)
print('TRAIN_START_DATE ', TRAIN_START_DATE)
print('TRAIN_END_DATE ', TRAIN_END_DATE)
print('VAL_START_DATE ', VAL_START_DATE)
print('VAL_END_DATE ', VAL_END_DATE, '\n')
print('TICKER LIST ', TICKER_LIST, '\n')
res_timestamp = 'res_' + str(datetime.now().strftime("%Y-%m-%d__%H_%M_%S"))
return res_timestamp
def set_Pandas_Timedelta(TIMEFRAME):
timeframe_to_delta = {'1m': pd.Timedelta(minutes=1),
'5m': pd.Timedelta(minutes=5),
'10m': pd.Timedelta(minutes=10),
'30m': pd.Timedelta(minutes=30),
'1h': pd.Timedelta(hours=1),
'1d': pd.Timedelta(days=1),
}
if TIMEFRAME in timeframe_to_delta:
return timeframe_to_delta[TIMEFRAME]
else:
raise ValueError('Timeframe not supported yet, please manually add!')
def save_best_agent(study, trial):
if study.best_trial.number != trial.number:
return
print('\n' + bcolors.OKGREEN + 'Found new best agent!' + bcolors.ENDC + '\n')
# Copy agent from workdir and save in result folder
name_folder = trial.user_attrs['name_folder']
name_test = trial.user_attrs['name_test']
from_directory = f"./train_results/cwd_tests/{name_test}/"
to_directory = f"./train_results/{name_folder}/stored_agent/"
os.makedirs(to_directory, exist_ok=True)
copy_tree(from_directory, to_directory)
# Dump trial in pickle file to avoid error where params arre not copied
with open(f"./train_results/{name_folder}/best_trial", "wb") as handle:
pickle.dump(trial, handle, protocol=pickle.HIGHEST_PROTOCOL)
def sample_hyperparams(trial):
average_episode_step_min = no_candles_for_train + 0.25 * no_candles_for_train
sampled_erl_params = {
"learning_rate": trial.suggest_categorical("learning_rate", [3e-2, 2.3e-2, 1.5e-2, 7.5e-3, 5e-6]),
"batch_size": trial.suggest_categorical("batch_size", [512, 1280, 2048, 3080]),
"gamma": trial.suggest_categorical("gamma", [0.85, 0.99, 0.999]),
"net_dimension": trial.suggest_categorical("net_dimension", [2 ** 9, 2 ** 10, 2 ** 11, 2 ** 12]),
"target_step": trial.suggest_categorical("target_step",
[average_episode_step_min, round(1.5 * average_episode_step_min),
2 * average_episode_step_min]),
"eval_time_gap": trial.suggest_categorical("eval_time_gap", [60]),
"break_step": trial.suggest_categorical("break_step", [3e4, 4.5e4, 6e4])
}
# environment normalization and lookback
sampled_env_params = {
"lookback": trial.suggest_categorical("lookback", [1]),
"norm_cash": trial.suggest_categorical("norm_cash", [2 ** -12]),
"norm_stocks": trial.suggest_categorical("norm_stocks", [2 ** -8]),
"norm_tech": trial.suggest_categorical("norm_tech", [2 ** -15]),
"norm_reward": trial.suggest_categorical("norm_reward", [2 ** -10]),
"norm_action": trial.suggest_categorical("norm_action", [10000])
}
return sampled_erl_params, sampled_env_params
def set_pickle_attributes(trial, model_name, TIMEFRAME, TRAIN_START_DATE, TRAIN_END_DATE, VAL_START_DATE, VAL_END_DATE,
TICKER_LIST, TECHNICAL_INDICATORS_LIST, name_folder, name_test, study):
# user attributes for saving in the pickle model file later
trial.set_user_attr("model_name", model_name)
trial.set_user_attr("timeframe", TIMEFRAME)
trial.set_user_attr("train_start_date", TRAIN_START_DATE)
trial.set_user_attr("train_end_date", TRAIN_END_DATE)
trial.set_user_attr("test_start_date", VAL_START_DATE)
trial.set_user_attr("test_end_date", VAL_END_DATE)
trial.set_user_attr("ticker_list", TICKER_LIST)
trial.set_user_attr("technical_indicator_list", TECHNICAL_INDICATORS_LIST)
trial.set_user_attr("name_folder", name_folder)
trial.set_user_attr("name_test", name_test)
joblib.dump(study, f'train_results/{name_folder}/' + 'study.pkl')
def load_saved_data(TIMEFRAME, no_candles_for_train):
data_folder = './data/' + TIMEFRAME + '_' + str(no_candles_for_train + no_candles_for_val)
print('\nLOADING DATA FOLDER: ', data_folder, '\n')
with open(data_folder + '/data_from_processor', 'rb') as handle:
data_from_processor = pickle.load(handle)
with open(data_folder + '/price_array', 'rb') as handle:
price_array = pickle.load(handle)
with open(data_folder + '/tech_array', 'rb') as handle:
tech_array = pickle.load(handle)
with open(data_folder + '/time_array', 'rb') as handle:
time_array = pickle.load(handle)
return data_from_processor, price_array, tech_array, time_array
def write_logs(name_folder, model_name, trial, cwd, erl_params, env_params):
path_logs = './train_results/' + name_folder + '/logs.txt'
with open(path_logs, 'a') as f:
f.write('\n' + 'MODEL NAME: ' + model_name + '\n')
f.write('TRIAL NUMBER: ' + str(trial.number) + '\n')
f.write('CWD: ' + cwd + '\n')
f.write(str(erl_params) + '\n')
f.write(str(env_params) + '\n')
f.write('\n' + 'TIME START OUTER: ' + str(datetime.now()) + '\n')
return path_logs
def objective(trial, name_test, model_name, cwd, res_timestamp, gpu_id):
# Set full name_folder
name_folder = res_timestamp + '_' + name_test
set_pickle_attributes(trial, model_name, TIMEFRAME, TRAIN_START_DATE, TRAIN_END_DATE, VAL_START_DATE, VAL_END_DATE,
TICKER_LIST, TECHNICAL_INDICATORS_LIST, name_folder, name_test, study)
# Sample set of hyperparameters
erl_params, env_params = sample_hyperparams(trial)
# Load data from hard disk
data_from_processor, price_array, tech_array, time_array = load_saved_data(TIMEFRAME, no_candles_for_train)
# Set constants
env = CryptoEnvAlpaca
break_step = erl_params["break_step"]
cv = KFold(n_splits=KCV_groups)
# initiate logs for tracking behaviour during training
path_logs = write_logs(name_folder, model_name, trial, cwd, erl_params, env_params)
# K-fold splits function eval
#######################################################################################################
#######################################################################################################
drl_actions_matrix = []
sharpe_list_bot = []
sharpe_list_ewq = []
drl_rets_val_list = []
for split, (train_indices, test_indices) in enumerate(cv.split(price_array)):
with open(path_logs, 'a') as f:
f.write('TIME START INNER: ' + str(datetime.now()))
f.write('K-Fold: ' + str(split))
sharpe_bot, sharpe_eqw, drl_rets_tmp = train_and_test(trial, price_array, tech_array, train_indices,
test_indices, env, model_name, env_params,
erl_params, break_step, cwd, gpu_id)
sharpe_list_ewq.append(sharpe_eqw)
sharpe_list_bot.append(sharpe_bot)
with open(path_logs, 'a') as f:
f.write('\n' + 'SPLIT: ' + str(split) + ' # Optimizing for Sharpe ratio!' + '\n')
f.write('BOT: ' + str(sharpe_bot) + '\n')
f.write('HODL: ' + str(sharpe_eqw) + '\n')
f.write('TIME END INNER: ' + str(datetime.now()) + '\n\n')
# Fill the backtesting prediction matrix
drl_rets_val_list.append(drl_rets_tmp)
trial.set_user_attr("price_array", price_array)
trial.set_user_attr("tech_array", tech_array)
trial.set_user_attr("time_array", time_array)
# Hyperparameter objective function eval
#######################################################################################################
#######################################################################################################
# Matrices
trial.set_user_attr("drl_actions_matrix", drl_actions_matrix)
trial.set_user_attr("drl_rets_val_list", drl_rets_val_list)
# Interesting values
trial.set_user_attr("sharpe_list_bot", sharpe_list_bot)
trial.set_user_attr("sharpe_list_ewq", sharpe_list_ewq)
with open(path_logs, 'a') as f:
f.write('\nHYPERPARAMETER EVAL || SHARPE AVG BOT : ' + str(np.mean(sharpe_list_bot)) + '\n')
f.write('HYPERPARAMETER EVAL || SHARPE AVG HODL : ' + str(np.mean(sharpe_list_ewq)) + '\n')
f.write('DIFFERENCE : ' + str(
np.mean(sharpe_list_bot) - np.mean(sharpe_list_ewq)) + '\n')
f.write('\n' + 'TIME END OUTER: ' + str(datetime.now()) + '\n')
return np.mean(sharpe_list_bot) - np.mean(sharpe_list_ewq)
# Optuna
#######################################################################################################
def optimize(name_test, model_name, gpu_id):
# Auto naming
res_timestamp = print_config()
name_test = f"{name_test}_KCV_{model_name}_{TIMEFRAME}_{H_TRIALS}H_{round((no_candles_for_train + no_candles_for_val) / 1000)}k"
cwd = f"./train_results/cwd_tests/{name_test}"
path = f"./train_results/{res_timestamp}_{name_test}/"
if not os.path.exists(path):
os.mkdir(path)
with open(f"./train_results/{res_timestamp}_{name_test}/logs.txt", "w") as f:
f.write(f"################################## || {model_name} || ##################################")
global study
obj_with_argument = lambda trial: objective(trial, name_test, model_name, cwd, res_timestamp, gpu_id)
# def obj_with_argument(trial):
# return objective(trial, name_test, model_name, cwd, res_timestamp, gpu_id)
sampler = optuna.samplers.TPESampler(multivariate=True, seed=SEED_CFG)
study = optuna.create_study(
study_name=None,
direction='maximize',
sampler=sampler,
pruner=optuna.pruners.HyperbandPruner(
min_resource=1,
max_resource=300,
reduction_factor=3
)
)
study.optimize(
obj_with_argument,
n_trials=H_TRIALS,
catch=(ValueError,),
callbacks=[save_best_agent]
)
# Main
#######################################################################################
gpu_id = 0
name_model = 'ppo'
name_test = 'model'
print('\nStarting KCV optimization with:')
print('drl algorithm: ', name_model)
print('name_test: ', name_test)
print('gpu_id: ', gpu_id, '\n')
optimize(name_test, name_model, gpu_id)