forked from otto-dev/HealthLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHopfield.py
110 lines (92 loc) · 3.72 KB
/
Hopfield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
from docx import Document
import re
import torch.nn as nn
from hflayers import Hopfield, HopfieldPooling, HopfieldLayer
import torch.nn.functional as F
import torch
from sentence_transformers import SentenceTransformer
import pickle
class HopfieldRetrievalModel(nn.Module):
def __init__(self, beta=0.125, update_steps_max=3):
# def __init__(self, beta=0.125):
super(HopfieldRetrievalModel, self).__init__()
self.hopfield = Hopfield(
scaling=beta,
update_steps_max=update_steps_max,
update_steps_eps=1e-5,
# do not project layer input
state_pattern_as_static=True,
stored_pattern_as_static=True,
pattern_projection_as_static=True,
# do not pre-process layer input
normalize_stored_pattern=False,
normalize_stored_pattern_affine=False,
normalize_state_pattern=False,
normalize_state_pattern_affine=False,
normalize_pattern_projection=False,
normalize_pattern_projection_affine=False,
# do not post-process layer output
disable_out_projection=True)
def forward(self, memory, trg):
memory = torch.unsqueeze(memory, 0)
trg = torch.unsqueeze(trg, 0)
output = self.hopfield((memory, trg, memory))
output = output.squeeze(0)
memories = memory.squeeze(0)
# temp = torch.bmm(F.softmax(attn_output_weights_init, dim=-1), memory).squeeze(0)
pair_list = F.normalize(output) @ F.normalize(memories).t() # step1
return pair_list
def read_external_knowledge(path):
path = '/Users/jmy/Desktop/ai_for_health_final/exsit_knowledge/my_dict.pkl'
with open(path, 'rb') as file:
loaded_data = pickle.load(file)
paragraph = []
for i in loaded_data:
paragraph.append(loaded_data[i])
return paragraph
def read_reports(path):
reports = []
for filename in os.listdir(path):
if filename.endswith(".txt"):
filepath = os.path.join(path, filename)
# Read the .docx file
with open(filepath, 'r') as f:
txt = f.read()
reports.extend(txt.split('\n'))
return reports
def retrieval_info(reports, path, k):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
paragraphs = read_external_knowledge(path + '/exsit_knowledge')
print(len(paragraphs))
# sentence_embedding with paragraphs
model = SentenceTransformer('all-mpnet-base-v2')
# p_embeddings = []
# for i in paragraphs:
# p_embeddings.append(model.encode(i))
p_embeddings = model.encode(paragraphs)
# sentence_embedding with reports
report_embeddings = model.encode(reports)
print('report', report_embeddings.shape)
print('p_embedding', p_embeddings.shape)
retrievaler = HopfieldRetrievalModel().to(device)
result = retrievaler(torch.tensor(p_embeddings).to(device) * 100, torch.tensor(report_embeddings).to(device) * 100)
input_ids = torch.topk(result, k, dim=1).indices
# mask = ~(input_ids == input_ids[0]).any(dim=1)
# input_ids = input_ids[mask]
indices = input_ids[0]
# indices = set()
# for input_id in input_ids:
# for id in input_id:
# indices.add(id.item())
knowledge = []
for indice in indices:
knowledge.append(paragraphs[indice])
knowledge = [x for x in knowledge if x != '']
return knowledge
if __name__ == '__main__':
reports = read_reports(
'/Users/chongzhang/PycharmProjects/ai_for_health_final/dataset_folder/health_report_{243}') # 13452
know = retrieval_info(reports, '/Users/chongzhang/PycharmProjects/ai_for_health_final/', 3)
for i in know:
print(i)