-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanfis.py
458 lines (405 loc) · 15.7 KB
/
anfis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import numpy as np
import numpy.matlib
import pandas as pd
import time
from math import *
import sys
class Architecture:
def __init__(self, config, mparams, kparams, nodes, ni, no, mf, nc, last_decrease_ss = 1, last_increase_ss = 1):
self.config = config
self.mparams = mparams
self.kparams = kparams
self.nodes = nodes
self.ni = ni
self.no = no
self.mf = mf
self.nc = nc
self.last_decrease_ss = last_decrease_ss
self.last_increase_ss = last_increase_ss
self.S = []
self.P = []
def calculate_output1(mynet):
mparams = mynet.mparams
for k in range(mynet.no):
for i in range(mynet.ni):
for j in range(mynet.mf):
ind = mynet.ni + i*mynet.mf + j
x = mynet.nodes[i,k]
sigma = mparams[i*mynet.mf+j,0,k]
if np.isnan(sigma):
print('in calculate output1 prob!')
time.sleep(0.2)
c = mparams[i*mynet.mf+j,0,k]
if sigma == 0:
tmp1 = 0
else:
tmp1 = (x - c)/sigma
if sigma == 0:
tmp2 = 0
else:
tmp2 = tmp1*tmp1
if sigma == 0:
tmp = 0
else:
tmp = np.exp(-0.5 *tmp2)
mynet.nodes[ind,k] = tmp # gaussmf
return mynet
def calculate_output2(mynet):
st = mynet.ni + mynet.ni*mynet.mf
for i in range(st,st+mynet.nc):
I = np.where(mynet.config[:,i] == 1.0)
for k in range(mynet.no):
tmp = np.cumprod(mynet.nodes[I,k])
mynet.nodes[i,k] = tmp[-1]
return mynet
def calculate_output3(mynet):
st = mynet.ni + mynet.ni*mynet.mf + mynet.nc
for i in range(st,st+mynet.nc):
I = np.where(mynet.config[:,i] == 1)
for k in range(mynet.no):
denom = sum(sum(mynet.nodes[I,k]))
mynet.nodes[i,k] = mynet.nodes[i-mynet.nc,k]/denom
return mynet
def calculate_output4(mynet):
st = mynet.ni + mynet.ni*mynet.mf + 2*mynet.nc
kparam = mynet.kparams
for k in range(mynet.no):
inp = mynet.nodes[0:mynet.ni, k]
for i in range(mynet.nc):
wn = mynet.nodes[i+st-mynet.nc, k]
mynet.nodes[i+st,k] = wn*(sum(np.multiply(kparam[i,0:-1,k], inp)) + kparam[i,-1,k])
return mynet
def calculate_output5(mynet):
for k in range(mynet.no):
mynet.nodes[-1,k] = sum(mynet.nodes[-mynet.nc-1:-1, k])
return mynet
def get_kalman_data(mynet, outputs):
kalman_data = np.zeros(((mynet.ni+1)*mynet.nc+1,mynet.no))
st = mynet.ni + mynet.ni*mynet.mf + mynet.nc
for ii in range(mynet.no):
j = 0
for i in range(st,st+mynet.nc):
for k in range(mynet.ni):
kalman_data[j,ii] = mynet.nodes[i,ii]*mynet.nodes[k,ii]
j = j + 1
kalman_data[j,ii] = mynet.nodes[i,ii]
j = j + 1
kalman_data[j,ii] = outputs[ii]
return kalman_data
def mykalman(mynet, kalman_data, j):
for ii in range(mynet.no):
k_p_n = (mynet.ni + 1) * mynet.nc
alpha = 1000000
if j==0:
mynet.P = np.zeros((k_p_n,1))
mynet.S = alpha*np.eye(k_p_n)
x = kalman_data[0:-1,ii]
y = kalman_data[-1,ii]
x.shape = (21,1)
tmp1 = np.transpose(np.matmul(np.transpose(x),mynet.S))
denom = 1 + sum(sum(np.multiply(tmp1, x)))
tmp2 = tmp1
tmp1 = np.matmul(mynet.S,x)
# tmp2 = np.transpose((np.transpose(x)*mynet.S))
tmp_m = np.matmul(tmp1,np.transpose(tmp2))
tmp_m = (-1/denom)*tmp_m
mynet.S = mynet.S + tmp_m
diff = y - sum(sum(np.multiply(x, mynet.P)))
tmp1 = diff*(np.matmul(mynet.S,x))
mynet.P = mynet.P + tmp1
mynet.kparams[:,:,ii] = np.transpose(mynet.P.reshape(mynet.ni+1, mynet.nc))
return mynet
def clear_de_dp(mynet):
mynet.mparam_de_do = np.zeros((mynet.ni*mynet.mf,2,mynet.no))
mynet.kparam_de_do = np.zeros((mynet.nc,mynet.ni+1, mynet.no))
return mynet
# equivalent function of matlab find returning indices of array with matching condition
def indices(a, func):
return [i for (i, val) in enumerate(a) if func(val)]
def do4_do3(mynet,i, j, k):
kparam = mynet.kparams
inp = np.transpose(mynet.nodes[0:mynet.ni, k])
jj = j - mynet.ni - mynet.ni*mynet.mf - 2*mynet.nc
tmp = sum(np.multiply(kparam[jj, 0:-1, k], inp)) + kparam[jj,-1,k]
if np.isnan(tmp):
print('problem in do4_do3 derivative')
return tmp
def do3_do2(mynet,i, j, k):
II = indices(mynet.config[:,j], lambda x: x == 1)
I = indices(II, lambda x : x < j)
m = [II[i] for i in I]
n = [mynet.nodes[j,k] for j in m]
total = sum(n)
if j-i == mynet.nc:
tmp = (total-mynet.nodes[i,k])/(total*total)
else:
tmp = -mynet.nodes[j - mynet.nc, k]/(total*total)
if np.isnan(tmp):
print('problem in do3_do2 derivative')
return tmp
def derivative_o_o(mynet,i, j, k):
if i >= mynet.ni + mynet.ni*mynet.mf + 2*mynet.nc:
tmp = 1
elif i >= mynet.ni + mynet.ni*mynet.mf + mynet.nc:
tmp = do4_do3(mynet, i, j, k)
elif i >= mynet.ni + mynet.ni*mynet.mf:
tmp = do3_do2(mynet, i, j, k)
elif i >= mynet.ni:
if mynet.nodes[i,k] == 0:
tmp = 0
else:
tmp = mynet.nodes[j,k]/mynet.nodes[i,k]
return tmp
def calculate_de_do(mynet, de_dout):
mynet.de_do = np.zeros((np.size(mynet.nodes, 0), mynet.no))
for k in range(mynet.no):
mynet.de_do[-1,k] = de_dout[k]
for i in range(len(mynet.nodes[:,k])-2, mynet.ni + 1,-1):
de_do = 0
II = indices(mynet.config[i,:], lambda x: x == 1)
I = indices(II,lambda x: x > i)
for j in range(len(I)):
jj = II[I[j]]
tmp1 = mynet.de_do[jj, k]
tmp2 = derivative_o_o(mynet,i, jj, k)
de_do = de_do + tmp1*tmp2
mynet.de_do[i,k] = de_do
return mynet
def dmf_dp(mynet,i, j, k):
I = indices(mynet.config[:,i], lambda x: x == 1)
x=mynet.nodes[I, k]
sigma = mynet.mparams[i-mynet.ni, 0, k]
c = mynet.mparams[i-mynet.ni, 1, k]
if np.isnan(sigma):
print('in dmf_dp prob!')
time.sleep(2)
### gaussmf
if sigma == 0:
tmp1 = 0
else:
tmp1 = (x[0] - c)/sigma
if sigma == 0:
tmp2 = 0
else:
tmp2 = exp(-0.5*tmp1*tmp1)
if j == 0 and sigma == 0:
tmp = 0
elif j == 0 and sigma != 0:
tmp = (tmp2*(-tmp1)*(-(x[0]-c)/(sigma**2)))
elif j == 1 and sigma == 0:
tmp=0
elif j == 1 and sigma != 0:
tmp = (tmp2*(-tmp1)*(-1/sigma))
return tmp
def update_de_do(mynet):
for k in range(0,mynet.no):
s = 0
for i in range(mynet.ni, mynet.ni+mynet.ni*mynet.mf):
for j in range(0,2):
do_dp = dmf_dp(mynet, i, j, k)
if np.isnan(do_dp):
print('problem in update')
if np.isnan(mynet.de_do[i, k]):
print('problem in other chain derivative')
mynet.mparam_de_do[s,j, k] = mynet.mparam_de_do[s,j, k] + mynet.de_do[i, k]*do_dp
s = s + 1
return mynet
def update_parameter(mynet, step_size):
tmp = mynet.mparam_de_do
tmp = np.multiply(tmp,tmp)
len = np.sqrt(np.sum(tmp))
if len == 0:
print('prob in update_param')
sys.exit()
mynet.mparams = mynet.mparams - step_size * mynet.mparam_de_do/len
return mynet
def check_decrease_ss(error_array, last_change, current):
if (current - last_change < 4):
sts = False
elif ((error_array[current] < error_array[current - 1]) and \
(error_array[current - 1] > error_array[current - 2]) and \
(error_array[current - 2] < error_array[current - 3]) and \
(error_array[current - 3] > error_array[current - 4])):
sts = True
else:
sts = False
return sts
def check_increase_ss(error_array, last_change, current):
if (current - last_change < 4):
sts = False
elif ((error_array[current] < error_array[current - 1]) and \
(error_array[current - 1] < error_array[current - 2]) and \
(error_array[current - 2] < error_array[current - 3]) and \
(error_array[current - 3] < error_array[current - 4])):
sts = True
else:
sts = False
return sts
def update_step_size(mynet, RMSE, iter, step_size, decrease_rate, increase_rate):
if check_decrease_ss(RMSE, mynet.last_decrease_ss, iter):
step_size = step_size*decrease_rate
mynet.last_decrease_ss = iter
elif check_increase_ss(RMSE, mynet.last_increase_ss, iter):
step_size = step_size*increase_rate
mynet.last_increase_ss = iter
return [mynet, step_size]
def run_anfis(data, idx, epoch_n, mf, step_size, decrease_rate, increase_rate):
## DIVIDE DATA AS INPUT AND OUTPUT
inputs = data[:,0:idx]
outputs = data[:,idx:]
ndata = np.size(data,0) # No. of training samples/data (i.e. no. of rows)
ni = np.size(inputs,1)
no = np.size(outputs,1)
## DEFINE MINIMUM & MAXIMUM OF INPUTS TO DETERMINE INITIAL MEMBERSHIP FUNCTION AND SOME OTHER VARIABLES
mn = [np.min(inputs[:,x]) for x in range(ni)]
mx = [np.max(inputs[:,x]) for x in range(ni)]
mm = np.subtract(mx,mn)
nc = mf
Node_n = ni + ni*mf + 3*nc + 1
min_RMSE = np.inf
mparams2 = np.array([])
for i in range(ni):
tmp = np.linspace(mn[i], mx[i], num = mf)
tmp.shape = (mf,1)
tmp = np.concatenate((np.matlib.repmat(mm[i]/6,mf,1),tmp), axis = 1)
if i == 0:
mparams2 = tmp
else:
mparams2 = np.concatenate((mparams2,tmp), axis = 0)
mparams = np.zeros((ni*mf,2,no))
for i in range(no):
mparams[:,:,i] = mparams2
kparams = np.zeros((nc,ni+1,no)) # define initial kalman parameters with all zeros
## CREATE CONNECTION MATRIX AND NODES ARRAY
# connection matrix show which node connect to another
# nodes vector shows the output of certain node
config = np.zeros((Node_n,Node_n))
# <<<<for CANFIS original code changed <!--nodes=zeros(Node_n,1);-->. >>>>
nodes = np.zeros((Node_n,no))
# inputs - layer1 connections
st = ni
for i in range(ni):
for j in range(mf):
config[i,st+j] = 1
st = st + mf
# layer1-layer2 connections
st = ni + ni*mf
if np.size(inputs,1) == 2:
for i in range(mf):
config[ni+i,st] = 1
config[ni+mf+i,st] = 1
st = st + 1
elif np.size(inputs,1) == 3:
for i in range(mf):
config[ni+i,st] = 1
config[ni+mf+i,st] = 1
config[ni+2*mf+i,st] = 1
st = st + 1
elif np.size(inputs,1) == 4:
for i in range(mf):
config[ni+i,st] = 1
config[ni+mf+i,st] = 1
config[ni+2*mf+i,st] = 1
config[ni+3*mf+i,st] = 1
st = st + 1
elif np.size(inputs,1) == 5:
for i in range(mf):
config[ni+i,st] = 1
config[ni+mf+i,st] = 1
config[ni+2*mf+i,st] = 1
config[ni+3*mf+i,st] = 1
config[ni+4*mf+i,st] = 1
st = st+1
elif np.size(inputs,1)==6:
for i in range(mf):
config[ni+i,st] = 1
config[ni+mf+i,st] = 1
config[ni+2*mf+i,st] = 1
config[ni+3*mf+i,st] = 1
config[ni+4*mf+i,st] = 1
config[ni+5*mf+i,st] = 1
st = st+1
else:
exit()
# layer2-layer3 connections
for i in range(nc):
for j in range(nc):
config[ni+ni*mf+i,ni+ni*mf+nc+j] = 1
# layer3-layer4 connections
for i in range(nc):
config[ni+ni*mf+nc+i,ni+ni*mf+2*nc+i] = 1
# layer4-layer5 connections
for i in range(nc):
config[ni+ni*mf+2*nc+i,-1] = 1
# inputs - layer4 connections
for i in range(ni):
for j in range(nc):
config[i,ni+ni*mf+2*nc+j] = 1
## CREATE A NETWORK ARCHITECTURE
mynet = Architecture(config, mparams, kparams, nodes, ni, no, mf, nc)
## ITERATION LOOP
RMSE = np.zeros(epoch_n)
for iter in range(epoch_n):
layer_1_to_3_output = np.zeros((Node_n,mynet.no,ndata))
anfis_output = np.zeros((ndata,mynet.no))
target = np.zeros(mynet.no)
de_dout = np.zeros(mynet.no)
for j in range(ndata):
# set j th input into the networks
# <<<<for CANFIS original code changed <!--mynet.nodes(1:mynet.ni)=inputs(j,:)';-->. >>>>
for k in range(mynet.no):
mynet.nodes[0:mynet.ni,k] = np.transpose(inputs[j,:]) ######################################################
# get node outputs from layer 1 to layer 3
mynet = calculate_output1(mynet)
mynet = calculate_output2(mynet)
mynet = calculate_output3(mynet)
# save outputs of layer 1 to 3
for k in range(mynet.no):
layer_1_to_3_output[:,k,j] = mynet.nodes[:,k]
# calculate kalman params
kalman_data = get_kalman_data(mynet,outputs[j,:])
# update kalman params
mynet = mykalman(mynet,kalman_data,j)
# clear all derivatives as zero
mynet = clear_de_dp(mynet)
for j in range(ndata):
# get output of layer 1 to 3 from layer_1_to_3_output to avoid recalculation of layer1-2-3
for k in range(mynet.no):
mynet.nodes[:,k] = layer_1_to_3_output[:,k,j]
# calculate outputs of layer 4
mynet = calculate_output4(mynet)
# calculate outputs of layer 5
mynet = calculate_output5(mynet)
# calculate network output
for k in range(mynet.no):
anfis_output[j,k] = mynet.nodes[-1,k]
target[k] = outputs[j,k]
# calculate differential of error
de_dout[k] = -2*(target[k] - anfis_output[j,k])
# backpropagete errors
mynet = calculate_de_do(mynet,de_dout)
mynet = update_de_do(mynet)
# calculate one train loop error
diff = anfis_output - outputs
total_squared_error = np.sum(diff*diff)
RMSE[iter] = np.sqrt(np.sum(total_squared_error)/(ndata*mynet.no))
print(str(iter) + '...aggregate rmse error is :\n' + str(RMSE[iter]))
if RMSE[iter] < min_RMSE:
bestnet = mynet
min_RMSE = RMSE[iter]
# update membership parameter
mynet = update_parameter(mynet, step_size)
# update step size
(mynet,step_size) = update_step_size(mynet,RMSE,iter,step_size,decrease_rate, increase_rate)
## CALCULATE BEST NETS OUTPUT
mynet = bestnet
for j in range(ndata):
for k in range(mynet.no):
mynet.nodes[0:mynet.ni,k] = np.transpose(inputs[j,:])
mynet = calculate_output1(mynet)
mynet = calculate_output2(mynet)
mynet = calculate_output3(mynet)
mynet = calculate_output4(mynet)
mynet = calculate_output5(mynet)
for k in range(mynet.no):
anfis_output[j,k] = mynet.nodes[-1,k]