forked from baidu-research/ba-dls-deepspeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
282 lines (238 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import glob
import logging
import os
import numpy as np
import re
import soundfile
from keras.models import model_from_json
from numpy.lib.stride_tricks import as_strided
from char_map import char_map, index_map
logger = logging.getLogger(__name__)
def calc_feat_dim(window, max_freq):
return int(0.001 * window * max_freq) + 1
def conv_output_length(input_length, filter_size, border_mode, stride,
dilation=1):
""" Compute the length of the output sequence after 1D convolution along
time. Note that this function is in line with the function used in
Convolution1D class from Keras.
Params:
input_length (int): Length of the input sequence.
filter_size (int): Width of the convolution kernel.
border_mode (str): Only support `same` or `valid`.
stride (int): Stride size used in 1D convolution.
dilation (int)
"""
if input_length is None:
return None
assert border_mode in {'same', 'valid'}
dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1)
if border_mode == 'same':
output_length = input_length
elif border_mode == 'valid':
output_length = input_length - dilated_filter_size + 1
return (output_length + stride - 1) // stride
def spectrogram(samples, fft_length=256, sample_rate=2, hop_length=128):
"""
Compute the spectrogram for a real signal.
The parameters follow the naming convention of
matplotlib.mlab.specgram
Args:
samples (1D array): input audio signal
fft_length (int): number of elements in fft window
sample_rate (scalar): sample rate
hop_length (int): hop length (relative offset between neighboring
fft windows).
Returns:
x (2D array): spectrogram [frequency x time]
freq (1D array): frequency of each row in x
Note:
This is a truncating computation e.g. if fft_length=10,
hop_length=5 and the signal has 23 elements, then the
last 3 elements will be truncated.
"""
assert not np.iscomplexobj(samples), "Must not pass in complex numbers"
window = np.hanning(fft_length)[:, None]
window_norm = np.sum(window**2)
# The scaling below follows the convention of
# matplotlib.mlab.specgram which is the same as
# matlabs specgram.
scale = window_norm * sample_rate
trunc = (len(samples) - fft_length) % hop_length
x = samples[:len(samples) - trunc]
# "stride trick" reshape to include overlap
nshape = (fft_length, (len(x) - fft_length) // hop_length + 1)
nstrides = (x.strides[0], x.strides[0] * hop_length)
x = as_strided(x, shape=nshape, strides=nstrides)
# window stride sanity check
assert np.all(x[:, 1] == samples[hop_length:(hop_length + fft_length)])
# broadcast window, compute fft over columns and square mod
x = np.fft.rfft(x * window, axis=0)
x = np.absolute(x)**2
# scale, 2.0 for everything except dc and fft_length/2
x[1:-1, :] *= (2.0 / scale)
x[(0, -1), :] /= scale
freqs = float(sample_rate) / fft_length * np.arange(x.shape[0])
return x, freqs
def spectrogram_from_file(filename, step=10, window=20, max_freq=None,
eps=1e-14):
""" Calculate the log of linear spectrogram from FFT energy
Params:
filename (str): Path to the audio file
step (int): Step size in milliseconds between windows
window (int): FFT window size in milliseconds
max_freq (int): Only FFT bins corresponding to frequencies between
[0, max_freq] are returned
eps (float): Small value to ensure numerical stability (for ln(x))
"""
with soundfile.SoundFile(filename) as sound_file:
audio = sound_file.read(dtype='float32')
sample_rate = sound_file.samplerate
if audio.ndim >= 2:
audio = np.mean(audio, 1)
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
" sample rate")
if step > window:
raise ValueError("step size must not be greater than window size")
hop_length = int(0.001 * step * sample_rate)
fft_length = int(0.001 * window * sample_rate)
pxx, freqs = spectrogram(
audio, fft_length=fft_length, sample_rate=sample_rate,
hop_length=hop_length)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.transpose(np.log(pxx[:ind, :] + eps))
def save_model(save_dir, model, train_costs, validation_costs, index=None):
""" Save the model and costs into a directory
Params:
save_dir (str): Directory used to store the model
model (keras.models.Model)
train_costs (list(float))
validation_costs (list(float))
index (int): If this is provided, add this index as a suffix to
the weights (useful for checkpointing during training)
"""
logger.info("Checkpointing model to: {}".format(save_dir))
model_config_path = os.path.join(save_dir, 'model_config.json')
with open(model_config_path, 'w') as model_config_file:
model_json = model.to_json()
model_config_file.write(model_json)
if index is None:
weights_format = 'model_weights.h5'
else:
weights_format = 'model_{}_weights.h5'.format(index)
model_weights_file = os.path.join(save_dir, weights_format)
model.save_weights(model_weights_file, overwrite=True)
np.savez(os.path.join(save_dir, 'costs.npz'), train=train_costs,
validation=validation_costs)
def load_model(load_dir, weights_file=None):
""" Load a model and its weights from a directory
Params:
load_dir (str): Path the model directory
weights_file (str): If this is not passed in, try to load the latest
model_*weights.h5 file in the directory
Returns:
model (keras.models.Model)
"""
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
# From http://stackoverflow.com/questions/5967500
return [atoi(c) for c in re.split('(\d+)', text)]
model_config_file = os.path.join(load_dir, 'model_config.json')
model_config = open(model_config_file).read()
model = model_from_json(model_config)
if weights_file is None:
# This will find all files of name model_*weights.h5
# We try to use the latest one saved
weights_files = glob.glob(os.path.join(load_dir, 'model_*weights.h5'))
weights_files.sort(key=natural_keys)
model_weights_file = weights_files[-1] # Use the latest model
else:
model_weights_file = weights_file
model.load_weights(model_weights_file)
return model
def argmax_decode(prediction):
""" Decode a prediction using the highest probable character at each
timestep. Then, simply convert the integer sequence to text
Params:
prediction (np.array): timestep * num_characters
"""
int_sequence = []
for timestep in prediction:
int_sequence.append(np.argmax(timestep))
tokens = []
c_prev = -1
for c in int_sequence:
if c == c_prev:
continue
if c != 0: # Blank
tokens.append(c)
c_prev = c
text = ''.join([index_map[i] for i in tokens])
return text
def text_to_int_sequence(text):
""" Use a character map and convert text to an integer sequence """
int_sequence = []
for c in text:
if c == ' ':
ch = char_map['<SPACE>']
else:
ch = char_map[c]
int_sequence.append(ch)
return int_sequence
def configure_logging(console_log_level=logging.INFO,
console_log_format=None,
file_log_path=None,
file_log_level=logging.INFO,
file_log_format=None,
clear_handlers=False):
"""Setup logging.
This configures either a console handler, a file handler, or both and
adds them to the root logger.
Args:
console_log_level (logging level): logging level for console logger
console_log_format (str): log format string for console logger
file_log_path (str): full filepath for file logger output
file_log_level (logging level): logging level for file logger
file_log_format (str): log format string for file logger
clear_handlers (bool): clear existing handlers from the root logger
Note:
A logging level of `None` will disable the handler.
"""
if file_log_format is None:
file_log_format = \
'%(asctime)s %(levelname)-7s (%(name)s) %(message)s'
if console_log_format is None:
console_log_format = \
'%(asctime)s %(levelname)-7s (%(name)s) %(message)s'
# configure root logger level
root_logger = logging.getLogger()
root_level = root_logger.level
if console_log_level is not None:
root_level = min(console_log_level, root_level)
if file_log_level is not None:
root_level = min(file_log_level, root_level)
root_logger.setLevel(root_level)
# clear existing handlers
if clear_handlers and len(root_logger.handlers) > 0:
print("Clearing {} handlers from root logger."
.format(len(root_logger.handlers)))
for handler in root_logger.handlers:
root_logger.removeHandler(handler)
# file logger
if file_log_path is not None and file_log_level is not None:
log_dir = os.path.dirname(os.path.abspath(file_log_path))
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
file_handler = logging.FileHandler(file_log_path)
file_handler.setLevel(file_log_level)
file_handler.setFormatter(logging.Formatter(file_log_format))
root_logger.addHandler(file_handler)
# console logger
if console_log_level is not None:
console_handler = logging.StreamHandler()
console_handler.setLevel(console_log_level)
console_handler.setFormatter(logging.Formatter(console_log_format))
root_logger.addHandler(console_handler)