forked from wentaoyuan/pcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_kitti.py
84 lines (69 loc) · 3.29 KB
/
test_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Author: Wentao Yuan ([email protected]) 05/31/2018
import argparse
import importlib
import models
import numpy as np
import os
import tensorflow as tf
import time
from io_util import read_pcd, save_pcd
from visu_util import plot_pcd_three_views
def test(args):
inputs = tf.placeholder(tf.float32, (1, None, 3))
gt = tf.placeholder(tf.float32, (1, args.num_gt_points, 3))
model_module = importlib.import_module('.%s' % args.model_type, 'models')
model = model_module.Model(inputs, gt, tf.constant(1.0))
os.makedirs(os.path.join(args.results_dir, 'plots'), exist_ok=True)
os.makedirs(os.path.join(args.results_dir, 'completions'), exist_ok=True)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(sess, args.checkpoint)
car_ids = [filename.split('.')[0] for filename in os.listdir(args.pcd_dir)]
total_time = 0
total_points = 0
for i, car_id in enumerate(car_ids):
partial = read_pcd(os.path.join(args.pcd_dir, '%s.pcd' % car_id))
bbox = np.loadtxt(os.path.join(args.bbox_dir, '%s.txt' % car_id))
total_points += partial.shape[0]
# Calculate center, rotation and scale
center = (bbox.min(0) + bbox.max(0)) / 2
bbox -= center
yaw = np.arctan2(bbox[3, 1] - bbox[0, 1], bbox[3, 0] - bbox[0, 0])
rotation = np.array([[np.cos(yaw), -np.sin(yaw), 0],
[np.sin(yaw), np.cos(yaw), 0],
[0, 0, 1]])
bbox = np.dot(bbox, rotation)
scale = bbox[3, 0] - bbox[0, 0]
bbox /= scale
partial = np.dot(partial - center, rotation) / scale
partial = np.dot(partial, [[1, 0, 0], [0, 0, 1], [0, 1, 0]])
start = time.time()
completion = sess.run(model.outputs, feed_dict={inputs: [partial]})
total_time += time.time() - start
completion = completion[0]
completion_w = np.dot(completion, [[1, 0, 0], [0, 0, 1], [0, 1, 0]])
completion_w = np.dot(completion_w * scale, rotation.T) + center
pcd_path = os.path.join(args.results_dir, 'completions', '%s.pcd' % car_id)
save_pcd(pcd_path, completion_w)
if i % args.plot_freq == 0:
plot_path = os.path.join(args.results_dir, 'plots', '%s.png' % car_id)
plot_pcd_three_views(plot_path, [partial, completion], ['input', 'output'],
'%d input points' % partial.shape[0], [5, 0.5])
print('Average # input points:', total_points / len(car_ids))
print('Average time:', total_time / len(car_ids))
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default='pcn_emd')
parser.add_argument('--checkpoint', default='data/trained_models/pcn_emd_car')
parser.add_argument('--pcd_dir', default='data/kitti/cars')
parser.add_argument('--bbox_dir', default='data/kitti/bboxes')
parser.add_argument('--results_dir', default='data/results/kitti_pcn_emd')
parser.add_argument('--num_gt_points', type=int, default=16384)
parser.add_argument('--plot_freq', type=int, default=100)
parser.add_argument('--save_pcd', action='store_true')
args = parser.parse_args()
test(args)