-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblood-create.R
253 lines (204 loc) · 7.26 KB
/
blood-create.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
library(tidyverse)
# - nitrate = sodium umol/L
# - phosphate = potassium umol/L
# - oestrogen = b12 pmol/L
# - bacterial counts = wbc 10^9 /L
# - algal counts = rbc count 10^12 /L
# - microplastics count = platlet counts 10^9 /L
# - presence/absence = inflamation marker 0 or 1 has to go in after the summary
# 5 measure from one person
# 50 people: 25 before treatment and 25 people after notte, different people
n <- 25
reps <- 5
# generate raw data before
na_m <- 100
na_sd <- 30
k_m <- 4.8
k_sd <- 0.9
b12_m <- 170
b12_sd <- 100
wbc_m <- 5
rbc_m <- 4.5
plate_m <- 300
before <- data.frame(sodium = round(rnorm(n * reps, na_m, na_sd), 1),
potassium = round(rnorm(n * reps, k_m, k_sd), 3),
b12 = round(rnorm(n * reps, b12_m, b12_sd), 1),
wbc = rpois(n * reps, wbc_m),
rbc = rpois(n * reps, rbc_m),
platlet = rpois(n * reps, plate_m),
status = "before",
patient = rep(1:n, each = reps))
# generate raw data before
na_m <- 120
k_m <- 4.6
b12_m <- 224
wbc_m <- 10
rbc_m <- 6.5
plate_m <- 400
after <- data.frame(sodium = round(rnorm(n * reps, na_m, na_sd), 1),
potassium = round(rnorm(n * reps, k_m, k_sd), 3),
b12 = round(rnorm(n * reps, b12_m, b12_sd), 1),
wbc = rpois(n * reps, wbc_m),
rbc = rpois(n * reps, rbc_m),
platlet = rpois(n * reps, plate_m),
status = "after",
patient = rep(1:n, each = reps))
# summarise data
before <-
before |>
group_by(patient) |>
summarise(sodium = mean(sodium),
potassium = mean(potassium),
b12 = mean(b12),
wbc = mean(wbc),
rbc = mean(rbc),
platlet = mean(platlet))
before$status = "before"
# add inflamation marker
before$inflam <- rbinom(n = n, prob = 0.8, size = 1)
after <-
after |>
group_by(patient) |>
summarise(sodium = mean(sodium),
potassium = mean(potassium),
b12 = mean(b12),
wbc = mean(wbc),
rbc = mean(rbc),
platlet = mean(platlet))
after$status = "after"
# add inflamation marker
# add inflamation marker
after$inflam <- rbinom(n = n, prob = 0.3, size = 1)
# combine
bloods <- bind_rows(before, after)
# write to file
write_csv(bloods, "r4babs1/week-9/data-raw/blood.csv")
# check some shit
GGally::ggpairs(bloods, aes(colour = status))
# ----- Sodium
blood_summary_na <- bloods |>
group_by(status) |>
summarise(mean = mean(sodium),
sd = sd(sodium),
n = length(sodium),
se = sd/sqrt(n))
ggplot() +
geom_point(data = bloods, aes(x = status, y = sodium),
position = position_jitter(width = 0.1, height = 0),
colour = "gray50") +
geom_errorbar(data = blood_summary_na,
aes(x = status, ymin = mean - se, ymax = mean + se),
width = 0.3) +
geom_errorbar(data = blood_summary_na,
aes(x = status, ymin = mean, ymax = mean),
width = 0.2) +
scale_y_continuous(name = "Sodium (umol/L)",
limits = c(0, 150),
expand = c(0, 0)) +
theme_classic()
# ----- Potassium
blood_summary_k <- bloods |>
group_by(status) |>
summarise(mean = mean(potassium),
sd = sd(potassium),
n = length(potassium),
se = sd/sqrt(n))
ggplot() +
geom_point(data = bloods, aes(x = status, y = potassium),
position = position_jitter(width = 0.1, height = 0),
colour = "gray50") +
geom_errorbar(data = blood_summary_k,
aes(x = status, ymin = mean - se, ymax = mean + se),
width = 0.3) +
geom_errorbar(data = blood_summary_k,
aes(x = status, ymin = mean, ymax = mean),
width = 0.2) +
scale_y_continuous(name = "Potassium (umol/L)",
limits = c(0, 7),
expand = c(0, 0)) +
theme_classic()
# ----- b12
blood_summary_b12 <- bloods |>
group_by(status) |>
summarise(mean = mean(b12),
sd = sd(b12),
n = length(b12),
se = sd/sqrt(n))
ggplot() +
geom_point(data = bloods, aes(x = status, y = b12),
position = position_jitter(width = 0.1, height = 0),
colour = "gray50") +
geom_errorbar(data = blood_summary_b12,
aes(x = status, ymin = mean - se, ymax = mean + se),
width = 0.3) +
geom_errorbar(data = blood_summary_b12,
aes(x = status, ymin = mean, ymax = mean),
width = 0.2) +
scale_y_continuous(name = "B12 (pmol/L)",
limits = c(0, 350),
expand = c(0, 0)) +
theme_classic()
# ----- wbc
blood_summary_wbc <- bloods |>
group_by(status) |>
summarise(mean = mean(wbc),
sd = sd(wbc),
n = length(wbc),
se = sd/sqrt(n))
ggplot() +
geom_point(data = bloods, aes(x = status, y = wbc),
position = position_jitter(width = 0.1, height = 0),
colour = "gray50") +
geom_errorbar(data = blood_summary_wbc,
aes(x = status, ymin = mean - se, ymax = mean + se),
width = 0.3) +
geom_errorbar(data = blood_summary_wbc,
aes(x = status, ymin = mean, ymax = mean),
width = 0.2) +
scale_y_continuous(name = "wbc (10^9/L)",
limits = c(0, 15),
expand = c(0, 0)) +
theme_classic()
# ----- rbc
blood_summary_rbc <- bloods |>
group_by(status) |>
summarise(mean = mean(rbc),
sd = sd(rbc),
n = length(rbc),
se = sd/sqrt(n))
ggplot() +
geom_point(data = bloods, aes(x = status, y = rbc),
position = position_jitter(width = 0.1, height = 0),
colour = "gray50") +
geom_errorbar(data = blood_summary_rbc,
aes(x = status, ymin = mean - se, ymax = mean + se),
width = 0.3) +
geom_errorbar(data = blood_summary_rbc,
aes(x = status, ymin = mean, ymax = mean),
width = 0.2) +
scale_y_continuous(name = "rbc (10^9/L)",
limits = c(0, 11),
expand = c(0, 0)) +
theme_classic()
bloods |>
ggplot(aes(x = sodium, y = potassium, colour = status)) +
geom_point() +
scale_y_continuous( name = "Potassium (umol/L)",
expand = c(0, 0)) +
scale_x_continuous(name = "Potassium (umol/L)",
expand = c(0, 0)) +
theme_classic()
# bone length create ------------------------------------------------------
bones <- read.table("clipboard") |> select(ulna = V1, height = V2)
bones |> ggplot(aes(x = ulna, y = height)) +
geom_point()
lm(data = bones, height ~ ulna)
bone <- data.frame(ulna = rnorm(30, mean = mean(bones$ulna), sd = sd(bones$ulna)))
bone$height <- (0.65293 + bone$ulna * 0.035 ) + rnorm(30, 0, 0.2)
bone$height <- round(bone$height, 2)
bone$ulna <- round(bone$ulna, 1)
bone |> ggplot(aes(x = ulna, y = height)) +
geom_point() +
scale_y_continuous(expand = c(0, 0), limits = c(0, 2.5)) +
scale_x_continuous(expand = c(0, 0), limits = c(0, 35))
write_delim(bone, "r4babs1/week-9/data-raw/height.txt")