-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappphoto.py
352 lines (304 loc) · 14.1 KB
/
appphoto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
from flask import Flask, request, abort, send_from_directory
from dotenv import load_dotenv
from linebot import LineBotApi, WebhookHandler
from linebot.models import (
MessageEvent, TextMessage, FollowEvent, TextSendMessage,
LocationMessage, ImageSendMessage, TemplateSendMessage, ButtonsTemplate, PostbackAction,
ImageMessage
)
import logging
import matplotlib.pyplot as plt
import uuid
import traceback
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.date import DateTrigger
from datetime import datetime
import sqlite3
import atexit
# 引入模組
from modules.diet_management import handle_diet_guidance
from modules.exercise_goal import (
show_exercise_goal, show_fat_loss_plan,
show_muscle_gain_plan, show_cardiovascular_plan
)
from modules.body_record import (
show_body_record_menu, prompt_body_record_input, handle_body_record_input,
show_body_records, handle_body_record_pagination, get_db_connection
)
from modules.exercise_guidance import (
show_exercise_guidance, show_training_plan_menu,
show_beginner_training_plan, show_intermediate_training_plan,
show_advanced_training_plan
)
# 載入環境變數
load_dotenv()
app = Flask(__name__)
# 初始化 LINE Bot API
line_bot_api = LineBotApi(os.getenv('LINE_CHANNEL_ACCESS_TOKEN'))
handler = WebhookHandler(os.getenv('LINE_CHANNEL_SECRET'))
# 資料庫檔案位置
DATABASE = 'user_body_data.db'
CREATEALARM_DB = 'createalarm.db'
# 儲存使用者狀態
user_states = {}
# 初始化 Google Generative AI (Gemini)
from google import generativeai
# 加載 Google Generative AI API 金鑰
google_api_key = os.getenv("GOOGLE_GENERATIVEAI_API_KEY")
generativeai.configure(api_key=google_api_key)
# 確保 img 目錄存在
if not os.path.exists('img'):
os.makedirs('img')
# 設定日誌
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 初始化 Scheduler
scheduler = BackgroundScheduler()
scheduler.start()
# 確保應用結束時關閉 Scheduler
atexit.register(lambda: scheduler.shutdown())
# 新增從伺服器提供圖片的路由
@app.route('/img/<filename>')
def serve_image(filename):
return send_from_directory(r'd:\\User\\Desktop\\BMICHART\\img', filename)
@app.route("/callback", methods=['POST'])
def callback():
# 驗證 LINE 平台的請求
signature = request.headers.get('X-Line-Signature')
body = request.get_data(as_text=True)
try:
handler.handle(body, signature)
except Exception as e:
logger.error(f"Error handling request: {e}")
abort(400)
return 'OK'
# 處理首次加入機器人的事件
@handler.add(FollowEvent)
def handle_follow(event):
welcome_message = "🎉 歡迎使用健身助手!請傳送「開始」以進入主選單。"
line_bot_api.reply_message(event.reply_token, TextSendMessage(text=welcome_message))
# New Image Message Handler
from linebot.models import ImageMessage
import io
from PIL import Image # Added for image processing
@handler.add(MessageEvent, message=ImageMessage)
def handle_image_message(event):
# Get the image content
try:
message_content = line_bot_api.get_message_content(event.message.id)
image_data = message_content.content
logger.info(f"Received image with size: {len(image_data)} bytes.") # Log image size
# Process image using Gemini API and get response
gemini_response = process_image_with_gemini(image_data)
# Reply with text message
line_bot_api.reply_message(event.reply_token, TextSendMessage(text=gemini_response))
except Exception as e:
logger.error(f"Error in image handling: {e}, traceback: {traceback.format_exc()}")
line_bot_api.reply_message(event.reply_token, TextSendMessage(text="Sorry, there was an unexpected error."))
def process_image_with_gemini(image_data):
"""Sends image to Gemini and returns the processed response."""
# Set up Gemini API client (replace with actual API setup)
try:
model = generativeai.GenerativeModel('gemini-1.5-flash') # Updated model here, check with latest one from Google
# Process image data (image_data is a byte array)
try:
image_file = Image.open(io.BytesIO(image_data)) # Convert bytes to image object
except Exception as e:
logger.error(f"Error opening image: {e}, traceback: {traceback.format_exc()}")
return "Sorry, I encountered an error opening the image."
try:
response = model.generate_content(
[image_file, "Describe this image in great details."]
)
return response.text
except Exception as e:
logger.error(f"Error processing image with Gemini API: {e}, traceback: {traceback.format_exc()}")
return "Sorry, I encountered an error processing the image with Gemini."
except Exception as e:
logger.error(f"General Error in process_image_with_gemini: {e}, traceback: {traceback.format_exc()}")
return "Sorry, I encountered an error processing the image."
# 處理使用者的訊息事件
@handler.add(MessageEvent, message=TextMessage)
def handle_message(event):
user_id = event.source.user_id
user_message = event.message.text.strip()
# 若使用者有狀態
if user_id in user_states:
state = user_states[user_id]
if state.get('state') == 'awaiting_body_record_input':
if user_message.lower() in ["取消", "返回"]:
del user_states[user_id]
line_bot_api.reply_message(event.reply_token, TextSendMessage(text="❌ 已取消體態紀錄。"))
return
try:
weight, height = map(float, user_message.split())
handle_body_record_input(event, line_bot_api, DATABASE, weight, height)
del user_states[user_id]
except ValueError:
line_bot_api.reply_message(event.reply_token, TextSendMessage(text="❌ 請按照正確格式輸入,例如:80 180"))
return
# 根據使用者輸入呼叫對應功能
if user_message == "開始":
main_menu = (
"🏋️♂️ 主選單:\n"
"1️⃣ 運動目標\n"
"2️⃣ 體態紀錄\n"
"3️⃣ 運動指導\n"
"4️⃣ AI 回答\n"
"請輸入對應選項。"
)
line_bot_api.reply_message(event.reply_token, TextSendMessage(text=main_menu))
elif user_message == "運動目標":
show_exercise_goal(event, line_bot_api)
elif user_message == "減脂":
show_fat_loss_plan(event, line_bot_api)
elif user_message == "增肌":
show_muscle_gain_plan(event, line_bot_api)
elif user_message == "提高心肺功能":
show_cardiovascular_plan(event, line_bot_api)
elif user_message == "體態紀錄":
show_body_record_menu(event, line_bot_api)
elif user_message == "輸入紀錄":
user_states[user_id] = {'state': 'awaiting_body_record_input'}
prompt_body_record_input(event, line_bot_api)
elif user_message == "查詢紀錄":
# 顯示第一頁紀錄,並在 show_body_records 中設定狀態
show_body_records(event, line_bot_api, DATABASE, page=1, user_states=user_states)
elif user_message == "顯示體重圖表":
try:
image_url = generate_weight_and_bmi_charts(user_id, DATABASE)
image_message = ImageSendMessage(
original_content_url=image_url,
preview_image_url=image_url
)
line_bot_api.reply_message(event.reply_token, image_message)
except Exception as e:
logger.error(f"圖表生成錯誤: {e}")
line_bot_api.reply_message(event.reply_token, TextSendMessage(text="⚠️ 體重和BMI變化圖表生成失敗。"))
# 新增對「上一頁 / 下一頁」指令的處理
elif user_message == "體態紀錄上一頁":
handle_body_record_pagination(event, "上一頁", line_bot_api, user_states, DATABASE)
elif user_message == "體態紀錄下一頁":
handle_body_record_pagination(event, "下一頁", line_bot_api, user_states, DATABASE)
elif user_message == "飲食管理":
handle_diet_guidance(event, line_bot_api, DATABASE)
elif user_message in ["訓練計劃", "📋 訓練計劃"]:
show_training_plan_menu(event, line_bot_api)
elif user_message == "運動指導":
show_exercise_guidance(event, line_bot_api)
elif user_message in [ "查看初學者訓練計劃", "初學者運動指導計劃"]:
show_beginner_training_plan(event, line_bot_api)
elif user_message in ["中級者訓練計劃", "中級者運動指導計劃"]:
show_intermediate_training_plan(event, line_bot_api)
elif user_message in ["高級者訓練計劃", "高級者運動指導計劃"]:
show_advanced_training_plan(event, line_bot_api)
# 新增 AI 回答功能
elif user_message.startswith("AI "):
user_query = user_message[3:].strip()
if not user_query:
reply_text = "❌ 請在「AI」後面輸入您的問題。例如:AI 什麼是增肌?"
else:
try:
response = generativeai.GenerativeModel('gemini-2.0-flash-exp').generate_content(user_query)
reply_text = response.text
except Exception as e:
logger.error(f"Gemini Error: {e}")
reply_text = "❌ 發生錯誤,請稍後再試。"
line_bot_api.reply_message(event.reply_token, TextSendMessage(text=reply_text))
else:
# 處理未定義的指令
default_reply = "抱歉,我不太明白您的意思。請選擇主選單中的選項。"
line_bot_api.reply_message(event.reply_token, TextSendMessage(text=default_reply))
@handler.add(MessageEvent, message=LocationMessage)
def handle_location_message(event):
gym_search_url = "https://www.google.com/maps/search/?api=1&query=gym"
line_bot_api.reply_message(
event.reply_token,
TextSendMessage(text=f"你可以在這裡找到附近的健身房: {gym_search_url}")
)
def generate_weight_and_bmi_charts(user_id, database, num_records=10):
try:
logger.info(f"開始為用戶 {user_id} 生成圖表")
# 從資料庫獲取數據
with get_db_connection(database) as conn:
c = conn.cursor()
c.execute(
"SELECT time, weight, bmi FROM body_data WHERE user_id = ? ORDER BY time ASC LIMIT ?",
(user_id, num_records)
)
data = c.fetchall()
if not data:
raise ValueError("沒有可用的數據來生成圖表")
times = [record[0] for record in data]
weights = [record[1] for record in data]
bmis = [record[2] for record in data]
# 創建圖表
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
# 繪製體重變化圖
ax1.plot(times, weights, marker='o', linestyle='-', color='b')
ax1.set_title('Weight trend over time')
ax1.set_xlabel('TIME')
ax1.set_ylabel('WEIGHT (kg)')
ax1.tick_params(axis='x', rotation=45)
# 繪製BMI變化圖
ax2.plot(times, bmis, marker='o', linestyle='-', color='g')
ax2.set_title('BMI trend over time')
ax2.set_xlabel('TIME')
ax2.set_ylabel('BMI')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
# 生成唯一的檔名和路徑
filename = f"{user_id}_{uuid.uuid4().hex}.png"
img_path = os.path.join('img', filename)
plt.savefig(img_path)
plt.close()
# 生成圖片URL
server_url = os.getenv("SERVER_URL")
if not server_url:
raise ValueError("SERVER_URL 環境變數未設置")
image_url = f"{server_url}/img/{filename}"
logger.info(f"圖表成功生成:{img_path}")
return image_url
except Exception as e:
logger.error(f"生成圖表時發生錯誤:{str(e)}")
raise
def save_reminder(user_id, reminder_time, message):
conn = sqlite3.connect(CREATEALARM_DB)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO reminders (user_id, reminder_time, message)
VALUES (?, ?, ?)
''', (user_id, reminder_time.isoformat(), message))
conn.commit()
conn.close()
logger.info(f"已儲存提醒:用戶 {user_id}, 時間 {reminder_time}, 訊息 '{message}'")
def send_reminder(user_id, message):
try:
line_bot_api.push_message(user_id, TextSendMessage(text=f"⏰ 提醒:{message}"))
logger.info(f"已發送提醒給用戶 {user_id}: {message}")
except Exception as e:
logger.error(f"發送提醒時出錯:{e}")
def schedule_reminder(user_id, reminder_time, message):
trigger = DateTrigger(run_date=reminder_time)
job_id = f"reminder_{user_id}_{uuid.uuid4().hex}"
scheduler.add_job(send_reminder, trigger, args=[user_id, message], id=job_id)
logger.info(f"已排程提醒:用戶 {user_id}, 時間 {reminder_time}, 訊息 '{message}', Job ID: {job_id}")
def load_and_schedule_existing_reminders():
conn = sqlite3.connect(CREATEALARM_DB)
cursor = conn.cursor()
cursor.execute('''
SELECT user_id, reminder_time, message FROM reminders
WHERE datetime(reminder_time) > datetime('now')
''')
reminders = cursor.fetchall()
conn.close()
for reminder in reminders:
user_id, reminder_time_str, message = reminder
reminder_time = datetime.fromisoformat(reminder_time_str)
schedule_reminder(user_id, reminder_time, message)
logger.info("已載入並排程所有現有的提醒。")
# 在應用啟動後調用
load_and_schedule_existing_reminders()
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)